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Chapter 1

Introduction

Content

1.1 Biological Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Definition of heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Heritability in human genetics . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Heritability in vegetal and animal genetics . . . . . . . . . . . . . . . . . 7

1.2 Heritability estimations in high dimensional linear mixed models . 8

1.2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Variable selection in the random effects of a high dimensional sparse
linear mixed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Heritability estimation for binary traits . . . . . . . . . . . . . . . . . 14

1.4.1 Generalized Linear Mixed Model and Liability Model . . . . . . . . . . 14

1.4.2 Existing methods for heritability estimation in the liability model . . . . 15

1.4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Biological Context

All biological traits are influenced by both genetic and environmental factors. Quantifying these
two contributions for a particular trait is a fundamental and challenging question in biology. The
concept of heritability refers to the part of the variability of an observed trait (or phenotype)
which can be attributed to genetic causes. Several missconceptions regarding heritability are
due to the use of the term in the common language, which differs from the technical definition
in the genetic field. For instance, a frequent missconception would be that heritability is the
proportion of a phenotype that is transmitted to the next generation. Firstly, genes are passed
on from parents to offspring but phenotypes are not. Secondly, if half of the genetic effects are
indeed transmitted from each parent, this particular half is specific to each offspring. Visscher
et al. (2008) gathered these frequent questions and mistakes regarding heritability. The concept
of heritability as it is used in the field of genetics is presented in the following section.
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1.1.1 Definition of heritability

As elegantly explained by Visscher et al. (2008), we consider the simple modeling where a
phenotype of interest is the result of genetic and environmental effects considered as independent:

Phenotype (P) = Genotype (G) + Environment (E).

The variance of the observable phenotypes (σ2
P ) can then be expressed as a sum of unobserved

underlying variances (σ2
G and σ2

E):

σ2
P = σ2

G + σ2
E .

Heritability (H2) is defined as a ratio of variances and expresses the proportion of the phe-
notypic variance that can be attributed to genetic factors:

H2 =
σ2
G

σ2
P

.

The genetic variability may be partitioned into variances coming from different sources, in
particular the variance σ2

A of additive genetic effects. Such additive effects are characterized by
the impact of single nucleotide polymorphisms (SNPs), which are DNA sequence differences at
the positions of the genome where there exists considerable variability in the population. These
positions are actually not frequent compared to the totality of the genome: the human genome
is indeed composed of approximately 3 billions of base pairs, a very large fraction of which are
identical for all humans. In the sequel, we will consider the ”narrow sense heritability” which is
the proportion of variability explained only by additive genetic effects, defined by

h2 =
σ2
A

σ2
P

.

Since the access to the genotype of thousands of individuals has been made possible by
the spectacular decreased cost of DNA sequencing, the heritability of quantitative traits and
pathologies has become widely studied. Yang et al. (2010) estimated for instance that around
45 % of human height was explained only by the most frequent SNPs.

1.1.2 Heritability in human genetics

We will here motivate the estimation of heritability for human traits. It is indeed a step toward
the understanding of complex diseases, which have often multiple causes. We refer in particular
to diseases which are not caused by a single affected gene but are nevertheless suspected to have
a strong genetic component, probably split among different genes.
For instance, the causes of psychiatric disorders, such as autism or schizophrenia, remain vague.
A genetic component has been suggested by the results of monozygotic and dizygotic twin
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studies (monozygotic twins have identical genomes while dizygotic twins share around 50% of
their genomes). These studies show that if one twin is affected by autistic disorders, the other
one is also affected in 82 to 92 % of cases for monozygotic twins (Bailey et al. (1995)), or
in 20% of cases for dizygotic twins (Hallmayer et al., 2011). Moreover, for a family which
already has an autistic child, the risk of having another one is evaluated at 20 % against 1%
in the general population. These studies describe autism as the psychiatric disease with the
most important genetic component. However, the severity of the autistic traits (language and
interaction disorders, intellectual disabilities...) can be very different for two patients with similar
causes, for instance the same mutation. It would thus seem, as it is also the case for other genetic
diseases, that the genetic background modulates the effect of a causal mutation and renders an
individual more or less sensitive to developing autistic traits. Furthermore, all studies show
that despite their identical genetic patrimony, the concordance of symptoms of monozygotic
twins is never total, which confirms an epigenetic and/or environmental component. However,
quantifying these different possible causes and potential interactions between them remains a
challenging issue.

Determining a significant genetic component of a disease also constitutes a strong argument
to refute some popular beliefs about causes of some illnesses. For instance, an important wave
of anti-vaccine movement has been fueled by a presumed connection between the hepatitis B
vaccine and multiple sclerosis. Similarly, the measles vaccine has been accused to cause autism
(Uno et al., 2012). Although no link has ever been demonstrated (Poland & Jacobson, 2001),
the consequences of the fact that many parents refuse to vaccinate their children remains a
major public health issue. Indeed, a recent study (Uno et al. (2012)) showed that more than
25% of parents in the US refused to vaccinate their children against mortal diseases like measles.
Regarding other proposed causes of autistic disorders, the ”refrigerator mother theory” was
developed by the psychiatrist Leo Kanner who claimed to observe a ”genuine lack of maternal
warmth” among his patients’ mothers. Even though this theory has since been discarded, the
mothers of autistic patients have suffered severe and unwarranted accusations for several decades.

1.1.3 Heritability in vegetal and animal genetics

In the field of vegetal and animal genetics, heritability estimation is the first step to the selection
of traits of interest, generally related to the yield of a valuable resource. We can mention the
examples of the optimization of the yield of milk, Visscher & Goddard (1995) or wheat Eid
(2009). The goal in Eid (2009) is to determine strongly heritable traits related to the yield and
then to obtain an optimal genotype. This genotype was even selected to be the most resistant
to extreme environmental conditions like water deprivation, which is currently a fundamental
issue.

If this kind of practice is generally accepted in animal genetics, it creates a controversy on
possible consequences of heritability estimations of human traits. Several studies estimated the
IQ heritability (Toro et al., 2015) and Davies et al. (2011) even announced that ”Genome-wide
association studies establish that human intelligence is highly heritable and polygenic”. The
controversy about IQ heritability is discussed in Visscher et al. (2008), who enumerates reasons
for the polemic nature of this issue. These include the very controversial definition of IQ as
a measure of intelligence as well as historical abuses related to eugenics. We will not further
discuss this controversy here, we just mention it to illustrate a frequent issue when dealing with
heritability of human features.
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Having briefly argued for the general interest of estimating heritability, we will now present
the statistical modeling used to provide these estimations.

1.2 Heritability estimations in high dimensional linear mixed
models

1.2.1 State of the art

Linear Mixed Models (LMMs) have been widely used in several fields, especially in medicine
and genetics. Yang et al. (2010) proposed to estimate the heritability of human height using a
classical LMM defined as follows:

Y = Xβ + Zu + e (1.1)

where Y = (Y1, . . . ,Yn)′ is the vector of observations of a phenotype of interest, X is a n ×
p matrix of predictors (or fixed effects), β is a p × 1 vector containing the unknown linear
effects of the predictors, and u and e correspond to the Gaussian random effects with variances
respectively equal to σ?2u and σ?2e .
Moreover, Z is a n × N matrix which contains the genetic information. More precisely, the
Zi,j ’s are normalized random variables in the following sense: they are defined from a matrix
W = (Wi,j)1≤i≤n, 1≤j≤N by

Zi,j =
Wi,j −W j

sj
, i = 1, . . . , n, j = 1, . . . , N , (1.2)

where

W j =
1

n

n∑
i=1

Wi,j , s
2
j =

1

n

n∑
i=1

(Wi,j −W j)
2, j = 1, . . . , N . (1.3)

In (1.2) and (1.3) theWi,j ’s are such that for each j in {1, . . . , N} the (Wi,j)1≤i≤n are independent
and identically distributed random variables and such that the columns of W are independent. In
genetic applications, the matrix W contains all the genetic information about all the individuals
in the study.
With this definition the columns of Z are empirically centered and have an empirical variance
equal to 1.

The LMM appears to be an intuitive modeling to describe the biological concept of heritability
as a ratio of genetic and phenotypic variances. Yang et al. (2010) and Pirinen et al. (2013)
proposed to estimate the parameter

η? =
Nσ?2u

Nσ?2u + σ?2e
, (1.4)

commonly considered as the mathematical definition for heritability since it determines how the
variance is shared between u and e.
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In Model (1.1), the log-likelihood conditionnaly to Z is given by:

L(β, σ2
u, σ

2
e) = −n

2
log(2π)− 1

2
log(|ZZ′σ2

u+σ2
e IdRn |−

1

2
(Y−Xβ)′(ZZ′σ2

u+σ2
e IdRn)−1(Y−Xβ).

(1.5)

Searle et al. (1992) gathered plenty of optimization techniques to estimate the parameters β,
σ2?
u and σ2?

e , among which we can quote Henderson equations or iterative methods like Fisher-
Scoring and Newton-Raphson.
A natural idea to estimate heritability is to estimate the variance parameters σ?2u and σ?2e in
order to obtain an estimator as the ratio:

Nσ̂u
2/(Nσ̂u

2 + σ̂e
2).

Pirinen et al. (2013) noticed that the model defined in (1.1) could be reparameterized with β,
η? and σ?2 = Nσ?2u + σ?2e as new parameters. More precisely,

Y ∼ N
(
Xβ, η?σ?2R + (1− η?)σ?2IdRn

)
,

where R = ZZ′/N .
Let U be the orthogonal matrix (U′U = UU′ = IdRn) such that URU′ = diag(λ1, . . . , λn) is a
diagonal matrix having its diagonal entries equal to λ1, . . . , λn. Hence, Ỹ = U′Y is a zero-mean
Gaussian vector having a covariance matrix equal to diag(η?σ?2λ1 + (1− η?)σ?2, . . . , η?σ?2λn +
(1−η?)σ?2), where the λi’s are the eigenvalues of R. Let us also denote X̃ = U′X. Finally they
computed and maximized the log-likelihood:

Ln(β, σ2, η) = −n
2

log(σ2)− 1

2

n∑
i=1

log(η(λi− 1) + 1)− 1

2σ2

n∑
i=1

(Ỹi − X̃β)2

η(λi − 1) + 1
− n

2
log(2π), (1.6)

where Ỹ = (Ỹ1, ..., Ỹn).
The aforementioned approaches raise two main concerns: firstly, they all have been validated in
the framework where N is fixed and n goes to infinity. Indeed, using classical results of the LMM,
we can obtain properties of consistency and asymptotic normality for the maximum likelihood
estimator of heritability. However, since in practice the number N of SNPs is widely greater
than the number of individuals n, it would be more appropriate to validate these methods in
the framework where n and N go to infinity, with n/N going to a ∈ (0,+∞).
Moreover, they all have been developed in a non sparse Gaussian framework, which would imply
that all the available genetic information would impact the observed phenotype. This unlikely
hypothesis has been discussed in particular by Jiang et al. (2014), who studied the potiential
error caused by non impacting SNPs in the model when considering a maximum likelihood
approach from both theoretical and numerical points of view.
We have only mentioned heritability estimation in linear mixed models, but there exist other
ways to define and estimate heritability. Indeed, important theoretical results on heritability
estimation have been proven in the framework where n and N go to infinity, with n/N going to
a ∈ (0,+∞), in the linear model

Y = Xβ + ε (1.7)
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where the random component comes from the residual vector ε which is assumed to be a zero-
mean Gaussian vector with variance σ2

ε and from the ”SNP matrix” X which columns are
assumed to be independent and identically distributed Gaussian variables. The heritability in
this model is defined as the ratio

η? =
||β||22

σ2
ε + ||β||22

. (1.8)

An advantage of this model is that there is no assumption on the distribution of β, in partic-
ular on its sparsity. However, strong assumptions are required on the stucture of the matrix
X. Several methods were proposed to estimate heritability in Model (1.7). Dicker (2014) pro-
posed a method-of-moments estimator which is asymptotically normal when n,N → +∞ and
n/N → a ∈ (0,+∞). Janson et al. (2015) developed the Eigenprism procedure to build accu-
rate confidence intervals for the heritability in finite sample size and also studied the asymptotic
behavior of their estimator when n,N → +∞ and n/N → a ∈ (0,+∞). Dicker & Erdogdu
(2016) studied the properties of the maximum likelihood estimator and conducted a numerical
comparison of the aforementioned methods which showed that the maximum likelihood estima-
tor had a smaller empirical variance than the two others. Dicker & Erdogdu (2016) showed the
consistency and the asymptotic normality of the maximum likelihood estimator and computed
as well an explicit form of the asymptotic variance.
In the same model, Verzelen & Gassiat (2016) studied the optimality of different procedures
depending on the sparsity. Indeed, Verzelen & Gassiat (2016) compared the performances of an
approach with variable selection (Gauss-LASSO estimator) and without selection (dense estima-
tor) in different sparsity regimes. They computed for each range of sparsity values the minimax
risk and proposed an adaptive estimator which achieves the minimax risk in all sparsity regimes.

1.2.2 Contribution

Our first contribution was to propose an estimator for heritability in the context where n and
N go to infinity, with n/N goes to a ∈ (0,+∞) and to establish its theoretical properties. This
work is developed in Chapter 2 of this manuscript and has been published in the Electronic
Journal of Statistics. We studied a model as the one defined in (1.1) except that we assumed
that the random effects could be sparse, that is that only a proportion q of the components of
u were non-zero:

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2) , for all 1 ≤ i ≤ N and e ∼ N
(

0, σ?e
2IdRn

)
, (1.9)

where IdRn denotes the n× n identity matrix, q is in (0, 1], and δ0 is the point mass at 0.
Up to considering the projection of Y onto the orthogonal of the image of X and for notational
simplicity, we studied the following model

Y = Zu + e . (1.10)

Moreover, since in our case we are only interested in estimating η?, we plugged in Ln defined in
(1.6) an estimator of σ?2, that is

σ̂2 =
1

n

n∑
i=1

Ỹi
2

η(λi − 1) + 1
.
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We implemented an estimator of η? as the maximizer of this likelihood function depending only
on parameter η:

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (1.11)

We obtained two main results in the framework where n and N go to infinity, with n/N going
to a ∈ (0,+∞): first, we proved that our estimator was

√
n-consistent despite the presence of

null components in the random effects. This result was obtained under mild assumptions on the
matrix W and for any unknown sparsity q.
Then we established a central limit theorem under the additional assumption that for all i and
j, Zi,j were Gaussian variables with zero mean and unit variance. We computed a closed-form
expression for the asymptotic variance, given by

τ2(a, η?, q) =
2

γ2(a, η?)
+ 3

a2η?2

γ4(a, η?)

(
1

q
− 1

)
S(a, η?) (1.12)

where

γ2(a, η?) =

{∫ (
λ− 1

η?(λ− 1) + 1

)2

dµa(λ)−
(∫

λ− 1

η?(λ− 1) + 1
dµa(λ)

)2
}

and

S(a, η?) =

[∫
λ(λ− 1)

(η?(λ− 1) + 1)2
dµa(λ)−

∫
λ

(η?(λ− 1) + 1)
dµa(λ)

∫
λ− 1

(η?(λ− 1) + 1)
dµa(λ)

]2

.

In the previous expression dµa(λ) is the density of Marchenko-Pastur, which is the distri-
bution of the eigenvalues of ZZ′/N . This distribution obtained by Marchenko & Pastur (1968)
was a key element to establish the proof of our results. We implemented this approach in the R
package HiLMM, which is available on the CRAN.
We also conducted a simulation study with finite sample size corresponding to realistic practical
studies. We showed that although the asymptotic variance defined in (1.12) was theoretically
depending on the sparsity q, its influence was barely noticeable in practice. However, the asymp-
totic variance was shown to be very sensitive to the parameter a = n/N : more precisely, when
the number of observations is very small compared to the size of the random effects (which is of-
ten the case in genetic studies), the variance of the heritability estimator increases substantially.
This numerical result motivated the idea of developing a variable selection approach in order to
reduce the size of the random effects and to improve the accuracy of heritability estimation.

1.3 Variable selection in the random effects of a high dimen-
sional sparse linear mixed model

Motivated by the numerical performance of our estimator described in the previous section, it
appeared to be a good idea to include a variable selection step in our method. The aim of this
variable selection step is to recover the support of the random effects, which means in practice
that we want to find the SNPs involved in the phenotypic variations. We would then consider
only the matrix of SNPs reduced to these relevant SNPs and estimate the heritability with
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smaller standard error than we would have obtained with the whole matrix of SNPs. Let us
first present the existing methods and results regarding variable selection in the random effects
of sparse linear mixed models.

1.3.1 State of the art

Although the case of linear mixed models has received less attention than the linear model, there
exist several methods to perform variable selection in linear mixed models.

Several works focus on selecting variable in the fixed effects of sparse LMMs, as for instance
Schelldorfer et al. (2011). For a complete review of these methods, we refer the reader to the
work of Müller et al. (2013). Regarding selection in the random effects, we are only aware of
the work of Fan & Li (2012) and Bondell et al. (2010). Bondell et al. (2010) proposed indeed
a method to select jointly fixed effects and random effects based on a EM algorithm. Fan & Li
(2012) proposed a penalized criterion with a particular penalty named SCAD (Smoothly Clipped
Absolute Deviation) which combines L1 and L2 penalties. Both methods can be computationally
very demanding in high dimension: on the one hand, the EM algorithm, on the other hand, the
cross validation to choose the two regularization parameters.

Variable selection in such high dimensional frameworks as those we are interested in can be
very tricky, as proven by Verzelen (2012) who studied the case of the random linear model defined
in Equation (1.7). Verzelen (2012) indeed established that if the condition Nq log(1/q) >> n
holds, namely when the number of causal SNPs (that is the number of non null components
in the random effects) is larger than the number of individuals, the support cannot be fully
recovered.

Regarding heritability estimation, the idea of introducing a variable selection step beforehand
was already proposed by Guan & Stephens (2011) in a Bayesian framework. Guan & Stephens
(2011) proposed indeed an approach, named BVSR (Bayesian Variable Selection Regression),
that is very efficient to estimate heritability in a very sparse framework but which is biased
when the number of causal SNPs is high. Zhou et al. (2013) then proposed a practical approach,
called BSLMM (Bayesian Sparse Linear Mixed Model) defined as an hybrid estimator between
BVSR and a classical maximum likelihood approach (without selection). This hybrid estimator
behaves closely to BVSR in very sparse frameworks and like the maximum likelihood estimator
(no selection) otherwise. These numerical observations of Zhou et al. (2013) are consistent
with the theoretical grounds established by Verzelen & Gassiat (2016) in the linear model and
described in Section 1.2.1.

1.3.2 Contribution

Methodology

We proposed a practical variable selection method to improve the accuracy of heritability es-
timation. This work has been submitted for publication and is contained in Chapter 3 of this
manuscript. Our method is implemented in the R package EstHer available on the CRAN.

Our approach has two main features: firstly, it is very efficient from a statistical point of
view since it provides confidence intervals considerably smaller than those obtained with methods
without variable selection. Secondly, its very low computational burden makes it usable on very
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large data sets coming from quantitative genetics. Our method can handle ultra high dimension
scenarios by using as a first step the Sure Independence Screening developed by (Ji & Jin, 2012).
Then we apply a LASSO criterion (Tibshirani, 1996) combined with the stability selection
(Meinshausen & Bühlmann, 2010). We also propose a methodology to compute confidence
intervals based on a non parametric bootstrap approach and validated on synthetic data. In
the course of the numerical study, we observed similar conclusions to those obtained by Zhou
et al. (2013) in the Bayesian framework: in very sparse scenarios (namely, less than 200 causal
SNPs out of 100 000), the estimator which includes a variable selection step is unbiased and
its variance is substantially smaller than the variance of the ML estimator. However, when the
number of causal SNPs is high, the selection step is not efficient and the corresponding estimator
can severely underestimate the heritability. We developed a criterion based on the data in order
to have an idea of the sparsity regime and whether we should apply a variable selection technique
or not. We developed a hybrid estimator able to adapt according to the sparsity and we showed
on synthetic data that this procedure allows us to reduce substantially the confidence intervals of
the heritability estimations compared to a classical maximum likelihood estimator in very sparse
scenarios. Otherwise, if the number of causal SNPs is too high, our hybrid estimator behaves like
the maximum likelihood estimator, which was expected after introducing the decision criterion
we proposed. The benefit of our method compared to the Bayesian approach developed by
Zhou et al. (2013) lies mainly in substantially smaller computational times than for MCMC
procedures, and also we do not have to deal with the settings of the different parameters in
order to ensure the convergence of the algorithms.

Applications in human neuroanatomy and in animal genetics

We applied this method to two different datasets.

The first one comes from the European project IMAGEN, which is a study on teenagers’
mental health. We estimated the heritability of the brain volume and the volumes of the different
subcortical regions. Six phenotypes out of nine did not pass the criterion so we can suspect that
a large number of SNPs are involved in their variations, and we obtained similar results to
those obtained with a classical maximum likelihood approach, such as those obtained by Toro
et al. (2015) who studied the same data thanks to the software GCTA developed by Yang et al.
(2011). However, for the other three phenotypes, we obtained heritability estimations with very
small standard errors as well as a list of potential causal SNPs, the relevance of which could be
analyzed from a biological point of view. This application to neuroanatomical data is described
after the description and the validation of our method on synthetic data in Chapter 3 of this
manuscript.

The second application is the study of a trout species named Salmo trutta. This brown
trout, which lives in fresh water, may or may not, during its life, decide to leave fresh water
to migrate to the sea. This migration has a major impact in the trout conservation, and we
aim to understand the reasons of this decision. It appears that growth during the freshwater
phase could potentially be a critical factor determining the fate of individuals as brown trout
(remained in fresh water) or sea trout; indeed, if a fish is growing fast in fresh water then there
is no real need to go to the sea where survival rate is much lower. However, if it is struggling to
grow in fresh water, then the benefit of going to sea and having better growth prospects might
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compensate the higher predation risk. Hence we aim to investigate the proportion of genetics
and environment effects in length variations, and if possible we would like to determine which
SNPs and environmental variables are associated with growth patterns. The size of this data set
was substantially smaller than in the previous application: we had indeed access to the length
of 192 trouts, the genotype of which is described by 4069 SNPs. We noticed, according to the
results of a numerical study, that our R package EstHer, which was dedicated to the analysis
of very large datasets, was not efficient in this case. However, when removing the first step
of our method, the Sure Independence Screening, which was specific to ultra high dimension
frameworks, we obtained satisfactory results again. This application is described in Chapter 4.

1.4 Heritability estimation for binary traits

We are interested in the extension of the previous methods to the heritability estimation of a
disease, where the observations are categorical (patient or control). We found in the literature
different models used to define and estimate heritability for binary data.

1.4.1 Generalized Linear Mixed Model and Liability Model

An intuitive generalization of the previous work for estimating the heritability of a binary trait
would be to consider the following Generalized Linear Mixed Model:

Yi ∼ B(qi), (1.13)

with qi = g(li) where g is a link function and li is defined as

l = Zu + e, (1.14)

with u ∼ N (0, σ?2u ) and e ∼ N (0, σ?2e ), as in the classical LMM defined in Section 1.2.
A classical choice of link function in the case of binary data is for instance

g(x) =
exp(x)

1 + exp(x)
,

which ensures that qi ∈ (0, 1).
The heritability can then be defined at the liability scale, that is the heritability of the contin-
uous variable l which is identical to the definition of heritability in the previous sections when
considering a Gaussian phenotype:

η? =
Nσ?2u

Nσ?2u + σ?2e
. (1.15)

Another modeling and definition for heritability of a binary trait was proposed by Falconer
(1965), who assumed that the binary observations could be seen as an indicator function of a
Gaussian variable exceeding a certain threshold t:

Yi = 1{li>t} (1.16)
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with li defined by the same expression (1.14) as in the previous model.
The unobserved Gaussian variable l is also called the liability in this modeling, which is

usually called the ”liability model” (Falconer (1965), Lee et al. (2011), Tenesa & Haley (2013)).
The heritability is then also defined as the heritability at the liability scale as written in Equation
(1.15).

1.4.2 Existing methods for heritability estimation in the liability model

In the literature specific to the heritability of binary phenotypes, we found methods for her-
itability estimation based on each of the previously described models. For the first modeling
described in Equation (1.13), de Villemereuil et al. (2013) proposed to estimate the variance
of the random effects σ?2u by using MCMC methods developed by Hadfield (2010) and then to
estimate the heritability as

η̂ =
σ̂2
u

σ̂2
u + 1 + 1

,

where the first 1 in the denominator stands for the residual variance and the second 1 for
the distribution-specific variance of a probit-link function (Nakagawa & Schielzeth, 2010). The
residual variance is indeed set to 1 because the binary data do not provide enough information
to infer both variances σ?2u and σ?2e .
Since the expression of the likelihood is not possible to optimize directly, Breslow & Clayton
(1993) proposed to maximize a penalized quasi-likelihood, using a Laplace approximation of the
likelihood. This method has been shown to underestimate the variance parameters, for instance
in the numerical comparative study performed by de Villemereuil et al. (2013).

Regarding the procedures based on the second modeling defined in Equations (1.16) and
(1.14), Lee et al. (2011) proposed to use a maximum likelihood approach as if the binary traits
were Gaussian, and then to apply a multiplicative factor to correct this approximation. Golan
et al. (2014) showed that this heritability estimator was strongly biased in several realistic
scenarios, in particular it was very sensitive to the prevalence of the disease (when the disease
is rarer, the bias increases). The estimator also underestimates the heritability when the real
heritability is high.
Weissbrod et al. (2015) presented a different methodology to estimate heritability also in the
liability model. They proposed a maximum likelihood based strategy to rebuild the underlying
liability before estimating the heritability. More precisely, they differentiated the likelihood with
respect to u and e and maximized the obtained functions for chosen values of σ2

u and σ2
e . It

gave them an estimator û of u and ê of e from which they obtained an estimator of the liability
as l̂ = Zû+ ê. Then they used this liability to provide another estimation of σ2

u and σ2
e and they

repeated this procedure until convergence.
A key element of the method proposed by Golan et al. (2014) was to notice the particular shape
of the data, which is the oversampling of cases in the case-control study. In a medical study,
the number of patients is indeed similar to the number of controls even though the studied
disease might be rare, which means that the proportion of cases in the study does not reflect
the proportion of cases in the population. The method developed by Golan et al. (2014) takes
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into account such oversampling of the cases and, as far as we are aware, it is the only method
to do so. They proposed a method of moments to estimate heritability.

More precisely, Golan et al. (2014) considered a simplified version of Model (1.14), where
the liability is given by

l = g + e,

where g is a genetic random effect, which can be correlated across individuals, and e is the
environmental random effect, which is assumed to be independent of the genetic effect. Both
effects are assumed to be Gaussian: e has a variance equal to (1−η?)IdRn and g has a covariance
matrix, the diagonal entries of which are equal to η? and the non diagonal term (i, j) is equal
to η?Gi,j . For 1 ≤ i 6= j ≤ n, the covariance matrix of (li, lj) is given by(

1 Gi,jη
?

Gi,jη
? 1

)
.

They defined the variable

pi =
Yi − P√
P (1− P )

,

where P is the proportion of cases in the study and the event {S = 1} happens if both individuals
i and j are selected in the study.

The heritability estimator proposed by Golan et al. (2014) is a least square estimator obtained
as the minimizer of ∑

i 6=j
(pipj − E(pipj |S = 1))2 .

Since E(pipj |S = 1) has no explicit formula, Golan et al. (2014) suggested to take advantage
of the fact that the correlations Gi,j were small and proposed an approximation based on Taylor
developments around Gi,j .

1.4.3 Contribution

Since the method of Golan et al. (2014) seemed very efficient according to their numerical results
and since it is the only method we have seen which considered the specificity of the data in a
case-control study, we decided to establish the theoretical properties of their estimator in the
framework: n and N go to infinity, and n/N goes to a ∈ (0,+∞).
We considered the model defined in Equations (1.16) and (1.14), and we assumed that Z was a
random matrix with centered and normalized columns as defined in Section 1.2.
In this model, the covariance matrix of (li, lj) can be written as

Σ(N) =

(
1 + η?(GN (i, i)− 1) η?GN (i, j)

η?GN (i, j) 1 + η?(GN (i, i)− 1),

)
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where for all 1 ≤ i, j ≤ n,

GN (i, j) =
1

N

N∑
k=1

Zi,kZj,k. (1.17)

The main idea is to notice that the quantities GN (i, j), GN (i, i)− 1 and GN (j, j)− 1 are small,
which implies that the matrix Σ(N) is close to identity.
Inspired by the method developed by Golan et al. (2014), we proposed a first and second order
approximation of E[pipj |Z, S = 1] based on Taylor developments in GN (i, j), GN (i, i) − 1 and
GN (j, j)− 1.
Despite differences in the models we considered, we found the same first order approximation
than obtained by Golan et al. (2014) but we have several differences in the second order approx-
imation.
First, we investigated the theoretical properties of the estimator found with the first order
approximation: we showed indeed that it was consistent under very mild assumptions on the
matrix of SNPs.
Then, we compared the numerical performances of the estimators obtained from the first and
second order approximations, from both a statistical and computational point of view. We high-
lighted that the computation of the estimator obtained with the second order approximation
was slower and did not improve the results compared to the first order approximation estimator.
These results are contained in Chapter 5 of this manuscript.
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Chapter 2

Heritability estimation in high
dimensional sparse linear mixed
models

The content of this chapter is contained in the article: A. Bonnet, E. Gassiat, C. Lévy-Leduc,
”Heritability estimation in high dimensional sparse linear mixed models”, Electronic Journal of
Statistics, 9(2):2099-2129, 2015.
The method which is presented is implemented in the HiLMM R package, available on the CRAN.
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Abstract

Motivated by applications in genetic fields, we propose to estimate the heritability in high-
dimensional sparse linear mixed models. The heritability determines how the variance is shared
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

between the different random components of a linear mixed model. The main novelty of our ap-
proach is to consider that the random effects can be sparse, that is may contain null components,
but we do not know either their proportion or their positions. The estimator that we consider is
strongly inspired by the one proposed by Pirinen et al. (2013), and is based on a maximum like-
lihood approach. We also study the theoretical properties of our estimator, namely we establish
that our estimator of the heritability is

√
n-consistent when both the number of observations n

and the number of random effects N tend to infinity under mild assumptions. We also prove
that our estimator of the heritability satisfies a central limit theorem which gives as a byproduct
a confidence interval for the heritability. Some Monte-Carlo experiments are also conducted in
order to show the finite sample performances of our estimator.

2.1 Introduction

Linear mixed models (LMMs) have been widely used in various fields such as agriculture, biol-
ogy, medicine and genetics. In quantitative genetics, LMMs have been used for estimating the
heritability of traits and breeding values as explained for instance by Lynch & Walsh (1998).
In Genome Wide Association Studies (GWAS), which is the application field that inspired our
work, Yang et al. (2011) suggested the use of linear mixed models to measure genotypes at a
large number of single nucleotide polymorphisms (SNPs) in large samples of individuals in order
to identify genetic variants that explain variations in phenotypes.

The model that we shall study in this paper is a LMM defined as

Y = Xβ + Zu + e , (2.1)

where Y = (Y1, . . . , Yn)′ is the vector of observations, X is a n × p matrix of predictors, β is
a p× 1 vector containing the unknown linear effects of the predictors, and u and e correspond
to the random effects. Moreover, in (2.1), Z is a n × N random matrix which will be further
described in Section 2.2.

We shall assume that the random effects can be sparse, that is only a proportion q of the
components of u are non-zero:

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2) , for all 1 ≤ i ≤ N and e ∼ N
(

0, σ?e
2IdRn

)
, (2.2)

where IdRn denotes the n× n identity matrix, q is in (0, 1], and δ0 is the point mass at 0. Note
that this corresponds to a more general situation than the usual assumption of (non-sparse)
Gaussian random effects which is recovered when q = 1.

The use of linear mixed models to estimate heritability has been proposed by Yang et al.
(2011) as an alternative to the regression models usually used in GWAS. The goal is to consider
the joint effect of all SNPs on a phenotype, and the heritability corresponds to the proportion
of phenotypic variance explained by all SNPs.

In the GWAS framework, Z is thus a matrix having a number of rows equal to the number of
individuals in the experiment that is n ≈ 1000 and a number of columns equal to the number of
SNPs taken into account in the experiment, namely N ≈ 500, 000. This application motivated
the framework that we chose where n and N tend to infinity.

The major difference between the framework of Yang et al. (2011) and ours is that they
consider that the random effects are Gaussian while we consider a mixture model between a
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

point mass at 0 and a Gaussian distribution. With this modeling, we assume that all SNPs are
not necessarily causal, that is that all SNPs do not explain a given phenotype.

Our main goal in this paper is to propose an estimator for the heritability in this possibly
sparse framework and to establish its theoretical properties in the non standard theoretical
context where n and N tend to infinity.

In this paper, we prove that using a strategy close to the one proposed by Pirinen et al.
(2013), which has been devised in the case q = 1, provides consistent estimators even in the
case where q < 1. Moreover, we prove that this estimator is

√
n-consistent in the following

asymptotic framework: n → ∞ and N → ∞ such as n/N → a > 0 and satisfies under mild
assumptions a central limit theorem in both cases q = 1 and q < 1. It has to be noticed that the
classical results that exist in linear mixed models are established only in the case where q = 1,
n tends to infinity and N is constant.

The paper is organized as follows. Section 2.2 provides a detailed description of the model and
the heritability estimator that we propose. Section 2.3 reviews existing methods for heritability
estimation. Section 2.4 is dedicated to the theoretical properties of our estimator. The numerical
results are presented in Section 2.5. They have been obtained thanks to the R package HiLMM
that we have developed and which is available from the Comprehensive R Archive Network
(CRAN). In Section 2.6, we provide some additional comments on our work as well as some
prospects such as the estimation of the proportion q of non null components in the random
effects. Finally, the proofs are given in Section 2.7.

2.2 Model and heritability estimator

2.2.1 Model

In the sequel, up to considering the projection of Y onto the orthogonal of the image of X and
for notational simplicity, we shall focus on the following model

Y = Zu + e , (2.3)

where Y = (Y1, . . . , Yn)′ is the vector of observations, u and e correspond to the random
effects, which are defined in (2.2). Moreover, Z is a n × N random matrix such that the
Zi,j are normalized random variables in the following sense: they are defined from a matrix
W = (Wi,j)1≤i≤n, 1≤j≤N by

Zi,j =
Wi,j −W j

sj
, i = 1, . . . , n, j = 1, . . . , N , (2.4)

where

W j =
1

n

n∑
i=1

Wi,j , s
2
j =

1

n

n∑
i=1

(Wi,j −W j)
2, j = 1, . . . , N . (2.5)

In (2.4) and (2.5) theWi,j ’s are such that for each j in {1, . . . , N} the (Wi,j)1≤i≤n are independent
and identically distributed random variables and such that the columns of W are independent.
With this definition the columns of Z are empirically centered and normalized.

In genetic applications, the matrix W contains all the genetic information about all the
individuals in the study. More precisely, for each j, the (Wi,j)1≤i≤n are i.i.d binomial random
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

variables with parameters 2 and pj . Wi,j = 0 (resp. 1, resp. 2) if the genotype of the ith
individual at locus j is qq (resp. Qq, resp. QQ) where pj is the frequency of Q allele at locus j.

In Model (2.1) with (2.4), (2.5), (2.2), one can observe that

Var(Y|Z) = Nqσ?u
2R + σ?e

2IdRn , where R =
ZZ′

N
and q is defined in (2.2) .

Inspired by Pirinen et al. (2013), Model (2.1) can be rewritten by using the following parameters:

σ?2 = Nqσ?u
2 + σ?e

2 and η? =
Nqσ?u

2

Nqσ?u
2 + σ?e

2 . (2.6)

Thus,
Var(Y|Z) = η?σ?2R + (1− η?)σ?2IdRn .

The parameter η? which belongs to [0, 1] is commonly called the heritability in the case where
q = 1, see for instance Yang et al. (2010), and determines how the variance is shared between u
and e when all the components of u are non zero. We propose in (2.6) to extend this definition
to the case where u may contain null components and q is in (0, 1]. The parameter q actually
corresponds to the proportion of non null components in u that is to the proportion of causal
SNPs. Then, the heritability defined by η? in (2.6) corresponds to the proportion of phenotypic
variance explained by the causal variants.

2.2.2 Heritability estimator

In the case where q = 1, observe that

Y|Z ∼ N
(

0, η?σ?2R + (1− η?)σ?2IdRn
)
,

where η? and σ? are defined in (2.6).
Let U as the orthogonal matrix (U′U = UU′ = IdRn) such that URU′ = diag(λ1, . . . , λn)

is a diagonal matrix having its diagonal entries equal to λ1, . . . , λn. Hence, in the case where
q = 1 and conditionally to Z, Ỹ = U′Y is a zero-mean Gaussian vector having a covariance
matrix equal to diag(η?σ?2λ1 + (1− η?)σ?2, . . . , η?σ?2λn + (1− η?)σ?2), where the λi’s are the
eigenvalues of R.

The method proposed by Pirinen et al. (2013) consists in computing the log-likelihood

Ln(σ2, η) = −n
2

log(σ2)− 1

2

n∑
i=1

log(η(λi − 1) + 1)− 1

2σ2

n∑
i=1

Ỹi
2

η(λi − 1) + 1
− n

2
log(2π)

and to maximize this function of two variables by iterative optimization techniques. Since in
our case we are only interested in estimating η?, we plugged an estimator of σ?2 that is

σ̂2 =
1

n

n∑
i=1

Ỹi
2

η(λi − 1) + 1

in Ln. Thus, in the case q = 1, the maximum likelihood strategy would lead to estimate η?,
assumed to be in [0, 1− δ] with δ > 0, by η̂ defined as a maximizer of

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (2.7)
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where the Ỹi’s are the components of the vector Ỹ = U′Y.
We shall establish in Theorem 2, which is proved in Section 2.7, that this strategy produces√

n-consistent estimators of η? in both cases: q = 1 and q < 1 and also that this estimator
satisfies a central limit theorem which provides as a by-product confidence intervals for η?.

2.3 Existing methods for heritability estimation

Several approaches can be used for estimating the heritability in the case where q = 1 but to
the best of our knowledge, no theoretical results concerning the estimation of the heritability or
the estimation of σ?u, σ?e have been established in the framework where both n and N tend to
infinity. This is one of the contributions of our paper. Among these approaches, we can quote
the REML (REstricted Maximum Likelihood) approach, originally proposed by Patterson &
Thompson (1971) and described for instance in Searle et al. (1992), which consists in estimating
first σ?u and σ?e and then to estimate η? as the ratio η̂ = Nσ̂u

2/(Nσ̂u
2 + σ̂e

2). However, this
type of approach is based on iterative procedures that require expensive matrix operations.
Hence, several approximations have been proposed such as the AI algorithm (Gilmour et al.
(1995)) which is used for instance in the software GCTA (Genome-wide Complex Trait Analysis)
described in Yang et al. (2011). Other approximations have also been proposed in the EMMA
algorithm (Kang et al. (2008)). For further details on the different approximations that could be
used we refer the reader to Pirinen et al. (2013). The latter paper proposes another methodology
for estimating the heritability which consists in rewriting Model (2.1) with the parameters (2.6)
and in using an eigenvalue decomposition of the matrix R. Further details on their methodology
are given hereafter. According to the numerical experiments conducted in Pirinen et al. (2013)
their approach has the lowest computational burden among the available algorithms.

In the case of sparse high dimensional framework, most of the papers studied the case of
linear models. Among them, we can quote: Meinshausen & Bühlmann (2010) and Beinrucker
et al. (2014). The high dimensional linear mixed model where u is sparse, that is the case
where q < 1, which is the most realistic case for the applications that we have in view, has
received little attention. It has been studied according two directions: detection and estimation.
Concerning the detection field in this framework, we are only aware of the work of Arias-Castro
et al. (2011) in which a testing procedure for detecting a sparse vector in high dimensional linear
sparse regression model is also proposed and compared with the one proposed by Ingster et al.
(2010). As for the procedures dedicated to the heritability estimation, there exist, to the best
of our knowledge, only three approaches: the approach of Yang et al. (2010) who propose to
approximate the genetic correlation between every pairs of individuals across the set of causal
SNPs by the genetic correlation across the set of all SNPs, the approach of Golan & Rosset
(2011) who propose a methodology based on MCEM (Monte-Carlo expectation-maximization)
developed by Wei & Tanner (1990) and the Bayesian approaches of Guan & Stephens (2011) and
Zhou et al. (2013). However, as far as the estimation issue in the high dimensional linear mixed
model is concerned, the authors of these papers did not establish the theoretical properties of
their estimators in the framework where both n and N tend to infinity.
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2.4 Theoretical results

Observe that another way of writing Model (2.3) with the parameters defined in (2.6) consists
in writing

Y =
1√
N

Zt + σ?
√

1− η?ε , (2.8)

where ε is a n × 1 Gaussian vector having a covariance matrix equal to identity and t =
(t1, . . . , tN )′ is a random vector such that

ti =
σ?
√
η?

√
q

wiπi ,

where the wi’s and the πi’s are independent, w = (w1, . . . , wN )′ is a Gaussian vector with a
covariance matrix equal to identity and the πi’s are i.i.d Bernoulli random variables such that
P(π1 = 1) = q.

The estimator η̂ is defined as a maximizer of Ln(η) for η ∈ [0, 1− δ] for some small δ > 0, Ln
being given in (2.7). We shall study the asymptotic properties of η̂ as n and N tend to infinity
in a comparable way, that is when n/N → a > 0. To understand the asymptotic behavior of η̂,
we shall first prove its consistency, then use a Taylor expansion of the derivative of Ln around η̂
in the usual way. The computations as can be seen in (2.7) involve empirical means of functions
of the eigenvalues λi of R = ZZ′

N . Using Theorem 1.1 of Bai & Zhou (2008), we shall prove
the almost sure convergence of such empirical quantities under a weak assumption denoted by
Assumption 1 as follows.

Assumption 1. Let Z and W be two matrices defined by (2.4) and (2.5). Recall that for each
j in {1, . . . , N} the (Wi,j)1≤i≤n are independent and identically distributed random variables
and such that the columns of W are independent (but not necessarily identically distributed).
Assume that the entries Wi,j of W are uniformly bounded, and have variance uniformly lower
bounded, that is: there exist WM < ∞ and κ > 0 such that 0 ≤ Wi,j ≤ WM and σ2

j =
Var(Wi,j) ≥ κ, for all j.

The following lemma ensures that the result of Marchenko & Pastur (1968) which gives
the empirical spectral distribution of sample covariance matrices ZZ′/N holds even when the
entries Zi,j of the matrix Z are not i.i.d. random variables but when Z is obtained by empirical
standardization of a matrix W satisfying Assumption 1.

Lemma 1. Under Assumption 1, as n,N → ∞ such that n/N → a > 0, the empirical spec-
tral distribution of RN = ZZ′/N : FRN (x) = n−1

∑n
k=1 1{λk≤x} tends almost surely to the

Marchenko-Pastur distribution defined as the distribution function of µa where, for any mea-
surable set A,

µa(A) =

{ (
1− 1

a

)
10∈A + νa(A) if a > 1

νa(A) if a ≤ 1

with

dνa(λ) =
1

2π

√
(a+ − λ)(λ− a−)

aλ
1[a−,a+](x)dx, a± = (1±

√
a)2 . (2.9)

In FRN (x), the λk’s denote the eigenvalues of RN .

Our first main result is the
√
n-consistency of the estimator η̂.
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

Theorem 1. Let Y = (Y1, . . . , Yn)′ satisfy Model (2.8) with η? > 0 and the entries Wi,j of W
satisfy Assumption 1. Then, for all q in (0, 1], as n,N →∞ such that n/N → a ∈ (0, 1],

√
n(η̂ − η?) = OP (1).

Such a result is a theoretical cornerstone to legitimate the use of an estimator. However,
statistical inference has to be based on confidence sets. The next step is thus to find the
asymptotic distribution of

√
n(η̂ − η?). Define for any η ∈ [0, 1] and λ ≥ 0

g(η, λ) =
λ− 1

η(λ− 1) + 1
.

Define also

γ2
n =

 1

n

n∑
i=1

g(η̂, λi)
2 −

(
1

n

n∑
i=1

g(η̂, λi)

)2


and

γ2(a, η?) =

{∫
g(η, λ)2dµa(λ)−

(∫
g(η, λ)dµa(λ)

)2
}
. (2.10)

We are now ready to state our second main result about the asymptotic distribution of√
n(η̂−η?). For general q, the result only holds when the entries of Z, that is the random variables

Zi,j are i.i.d. standard Gaussian. Indeed, as may be seen when computing the variances, we need
to be able to find the asymptotic behavior of empirical means of functions of the eigenvalues
together with the eigenvectors of the matrix R = ZZ′/N .

Theorem 2. Let Y = (Y1, . . . , Yn)′ satisfy Model (2.8) with η? > 0 and assume that the random
variables Zi,j are i.i.d. N (0, 1). Then for any q ∈ (0, 1], as n,N →∞ such that n/N → a > 0,

√
n(η̂ − η?)

converges in distribution to a centered Gaussian random variable with variance

τ2(a, η?, q) =
2

γ2(a, η?)
+ 3

a2η?2

γ4(a, η?)

(
1

q
− 1

)
S(a, η?)

where

S(a, η?) =
[∫ λ(λ−1)

(η?(λ−1)+1)2
dµa(λ)−

∫
λ

(η?(λ−1)+1)dµa(λ)
∫

λ−1
(η?(λ−1)+1)dµa(λ)

]2
.

In the case where q = 1, the result holds in the general situation described in Assumption
1, and allows us to propose confidence sets with precise asymptotic confidence level.

Theorem 3. Let Y = (Y1, . . . , Yn)′ satisfy Model (2.8) with q = 1 and with η? > 0. Assume also
that the entries Wi,j of W satisfy Assumption 1 then, as n,N →∞ such that n/N → a > 0,

γn

√
n

2
(η̂ − η?)

converges in distribution to N (0, 1).
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

Let us now give some additional comments on the previous results. Firstly, it has to be
noticed that none of the limiting variance depends on σ?. Secondly, Theorem 2 is proved here
only in the case where the Zi,j are i.i.d. Gaussian. This is because we used several times that the
matrix of eigenvectors of ZZ′/N is independent of the eigenvalues, and uniformly distributed on
the set of orthonormal matrices. We think that the result of Theorem 2 is also valid when the
Zi,j are defined from the Wi,j satisfying Assumption 1, as suggested by the numerical results
obtained in Section 2.5. To prove it requires new results in an active research topic of the
random matrix theory field. We can observe in the expression of τ2(a, η?) given in Theorem
2 that the presence of q is counterbalanced by the presence of a2. This will be confirmed by
the results obtained in the numerical results given in Section 2.5. Finally, we can observe that
2/(nγ2

n) corresponds to the usual inverse of the Fisher information associated to η. This result is
classical in the case where N is fixed and n tends to infinity but did not exist in the framework
where both n and N tend to infinity even if it was already used in biological applied papers for
deriving standard errors and confidence intervals. Theorem 3 proves that this result still holds
even in the case where both n and N tend to infinity.

To the best of our knowledge, the effect of the presence of null components in the random
effects has never been taken into account for computing the asymptotic variance of an estima-
tor of the heritability. This is the contribution of Theorem 2. This theorem shows that the
asymptotic variance contains an additional term which increases its value in the case q < 1 with
respect to the case q = 1. It is shown in Section 3.3 how the computation of the asymptotic
variance can be altered if this additional term is neglected. In practical situations, computing
the standard error given by Theorem 2 requires the knowledge of q which is in general unknown.
However, if an estimation of q is available for any practical reasons, the result of Theorem 2
can be used for computing confidence intervals and standard errors, see Section 2.6 for further
details.

2.5 Numerical experiments

In this section, we first explain how to implement our method and then we illustrate the theo-
retical results of Section 2.4 on finite sample size observations for both cases: q = 1 and q < 1.
We also compare the results obtained with our approach to those obtained by the GCTA soft-
ware described in Yang et al. (2010) and Yang et al. (2011) which is a reference in quantitative
genetics.

2.5.1 Implementation

In order to obtain η̂, we used a Newton-Raphson approach which is based on the following
recursion: starting from an initial value η(0),

η(k+1) = η(k) − L′n(η(k))

L′′n(η(k))
, k ≥ 1 ,

where L′n and L′′n denote the first and second derivatives of Ln defined in (2.7), respectively. The
closed form expression of these quantities are given in (2.13) and (2.25), respectively. In practice,
this approach converges after at most 20 iterations and is not very sensitive to the initialization,
namely to the value of η(0). However, in particular cases, the value of the initialization can
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Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

have an influence on the estimation of η?. This is the case, for instance, when the real value
η? is close to 1. In these situations, our algorithm can provide an estimation bigger than 1 and
we constrained our method to return a value equal to 0.99. Figure 2.1 shows the estimations
obtained on 100 replications when a = 0.1 and η? = 0.8. From this figure, we can see that
the estimation of η? does not depend in general on the initialization, except in some cases.
Moreover, the best choice for η(0) is not constant from one replication to another. In order to
limit the effect of the initialization, our algorithm uses several values for η(0) and whenever the
estimations differ, it keeps the estimation which is the farthest away from the boundaries.
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Figure 2.1 – Estimation of η̂ obtained in the case a = 0.1 and η? = 0.8 for different values of
initialization: η(0) = 0.1 (dots), η(0) = 0.5 (triangles) and η(0) = 0.9 (crosses). The plain line
displays the estimations obtained with our method to select the best initialization value and the
x-axis is the replication number.

2.5.2 Results in Model (2.2) when q = 1

We shall first consider the performance of the estimator η̂ when q = 1 for η? in {0.3, 0.5, 0.7},
n = 1000, σ?u = 0.1 and for a in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}, where a = n/N . We generated
500 data sets according to Model (2.1) using these parameters and Z as defined in (2.4) where
the Wi,j are binomial random variables with parameters 2 and pj . In our experiments the pj ’s
are uniformly drawn in [0.1, 0.5]. The corresponding boxplots of η̂ are displayed in Figure 2.2.
We can see from this figure that our approach provides unbiased estimators of η? and that the
smaller the a the larger the empirical variance.

In order to illustrate the central limit theorem given in Theorem 3, we first display in Figure
2.3 the histograms of γn(n/2)1/2 (η̂ − η?) along with the p.d.f of a standard Gaussian random
variable for η? = 0.5 and different values of a. We can see that the Gaussian p.d.f fits well the
data in all the considered cases. We also display in Figure 2.4 the values of n−1/2

√
2γ−2

n and
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Figure 2.2 – Boxplots of η̂ for different values of a, for η? = 0.3 (left), η? = 0.5 (middle) and
η? = 0.7 (right). The horizontal line corresponds to the true value of η?. The whiskers of each
boxplot correspond to the first and third quartiles.
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Figure 2.3 – Histograms of γn(n/2)1/2 (η̂ − η?) for η? = 0.5 and a = 0.05 (left), a = 0.1 (middle),
a = 0.5 (right) and the p.d.f of a standard Gaussian random variable in plain line.

the empirical standard deviation of (η̂ − η?) averaged over all the experiments. As shown in
Theorem 3, we also observe empirically that both quantities are very close.

In practice, the value of γ−1
n (n/2)−1/2 can be used for deriving confidence intervals for η?.

As we can see from Figure 2.4, our approach leads to very accurate confidence intervals for a
larger than 0.1 even in finite sample size cases.

Let us now compare our results with those obtained with the software GCTA. As we can
see from Figure 2.5 which displays the boxplots of η̂ for different values of a when η? = 0.7, the
results found by our approach and GCTA are very close. In both cases, we observe that when
a is close to 1 the estimations of η? are very accurate but when a is small the standard error
becomes very high.

28



H
er

it
ab

il
it

y
es

ti
m

at
io

n

Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

a

 

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

a

 

●

●

●

●

●

●

●

Figure 2.4 – Values of n−1/2
√

2γ−2
n (“•”) and the empirical standard deviation of (η̂−η?) (plain

line) for several values of η? (0.3 (left), 0.5 (right)).

●●●

●●●

●

●

●

●

●●●●

●

●●●●

●

●●
●
●

●

●●●●●

●

●

● ●

0.01 0.01 0.05 0.05 0.1 0.1 0.5 0.5 1 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.5 – Boxplots of η̂ for different values of a, using our method (dark gray) and GCTA
(light gray). The whiskers of each boxplot are the first and third quartiles.

2.5.3 Results in Model (2.2) when q < 1

This section is dedicated to the study of the performance of η̂ when q < 1. We generated 500
data sets according to Model (2.1) for η? = 0.7, a ∈ {0.05, 0.1, 0.5, 1}, different values of q and
Z defined in (2.4) where the Wi,j are binomial random variables with parameters 2 and pj . In
our experiments the pj ’s are uniformly drawn in [0.1, 0.5].

29



H
er

it
a
b

il
it

y
es

ti
m

a
ti

on

Chapter 2 - Heritability estimation in high dimensional sparse linear mixed models

Figure 2.6 displays the boxplots of η̂ for these parameters. We can see from this figure that
for small values of a, the estimators of η? have the same behavior for q = 1 and q < 1. However,
when a = 1 or a = 0.5, we can see from this figure that the presence of null components strongly
alter the performance of the estimator of η?. Since in typical GWAS experiments, a = 0.01 or
even smaller, the results of Figure 2.6 could lead to conclude that considering the case q < 1
is not necessary for such values of the parameter a. However, as already noticed from Figure
2.2, the variance of η̂ is very large for small values of a, hence considering the presence of null
components and proposing a strategy for selecting only the non null components of u could be
one way to increase a and thus to diminish the variance of η̂.
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Figure 2.6 – Boxplots of η̂ for different values of q, with η? = 0.7 and a = 1 (top left), a = 0.5
(top right), a = 0.1 (bottom left) and a = 0.01 (bottom right). The boxplots are based on 500
replications. The whiskers of each boxplot are the fist and third quartile.

In order to illustrate the central limit theorem given in Theorem 2, we first display in Figure
2.7 the histograms of τ−1

n n1/2 (η̂ − η?) along with the p.d.f of a standard Gaussian random
variable for η? = 0.7, two values of q: q = 0.01 and q = 0.1 and a = 0.5 (top) and two values
of a: a = 0.2 and a = 0.5 with q = 0.5 (bottom). Here, τn is the empirical version of τ(a, η?, q)
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where γ is replaced by γn and S(a, η?) is replaced by its empirical version with the eigenvalues
of R. When a is large (a = 0.5), we can see that the higher q the better the Gaussian p.d.f fits
the histograms.
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Figure 2.7 – Histograms of τ−1
n n1/2 (η̂ − η?) for a = 0.5 and q = 0.5 (top left), a = 0.1 and

q = 0.1 (top right), and for a = 0.1 and q = 0.01 (bottom left), a = 0.05 and q = 0.1 (bottom
right).

We also display in Figure 2.8 the values of n−1/2τn and the empirical standard deviation of
(η̂− η?) averaged over all the experiments for η? = 0.7 and q = 0.5. As shown in Theorem 2, we
observe empirically that both quantities are very close. We also display in this figure the value
of n−1/2τn with q = 1 which boils down to consider the asymptotic standard deviation found
in the non sparse model. We can see from this figure that neglecting the term depending on
q leads to underestimate the asymptotic variance of η̂ and that this difference is all the more
striking that a is close to 1.
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Figure 2.8 – Values of n−1/2τn with the real value of q (q = 0.5) (“•”), q = 1 (dotted line) and
the empirical standard deviation of (η̂ − η?) (plain line) for η? = 0.7.

2.6 Discussion

In the course of this study, we have proposed a methodology for estimating the heritability in
high dimensional linear mixed models. This methodology has two main features. Firstly, the
theoretical performances of our estimator are established in a non standard theoretical framework
where n and N tend to infinity and where the components of the random effect part can be
equal to zero. Secondly, the computational burden of our approach is very low which makes its
use possible on real data coming from GWAS experiments.

As a byproduct of the central limit theorem that we establish for η? we can derive a confi-
dence interval for the heritability. However, the confidence intervals depend on q which is the
proportion of non null components in u and which is general unknown. For estimating q, several
strategies can be considered. One could, for instance, use a GWAS approach to compute the
p-values of the correlation tests of each SNP with the observations Y and then keep only the
most significant ones. Such a practical approach can be used for providing a lower bound for q.
A refinement of this approach has been proposed by Toro et al. (2015) who observed, through
numerical studies, that for a fixed value of the heritability, the minimal p-value is all the more
low that the number of causal SNPs is small. Hence, performing a GWAS approach on a given
data set allows them to have an idea of the number of SNPs which are likely to be causal. One
could also propose another practical method based on a variable selection technique. Such an
approach has already been proposed by Fan & Li (2012) in the context of sparse linear mixed
models. However, the framework in which their theoretical results are derived is different from
the one that is considered in our paper. We are currently working on a paper Bonnet et al.
(2016) which presents a variable selection method which is adapted to our framework and which
could be used for estimating the proportion q of non null components in the random effects.

Moreover, we did not take into account the linkage disequilibrium issue which would require
to extend our results to the case where the columns of the random matrix are correlated. This
question will be the subject of a future work.
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2.7 Proofs

Let us write the singular value decomposition (SVD) of the n×N matrix Z/
√
N as

1√
N

Z = U
(√

D 0
)

V′

where U (already introduced in Section 2.1) is a n × n orthonormal matrix, V is a N × N
orthonormal matrix and

√
D is a n×n diagonal matrix having its diagonal entries equal to

√
λi,

the λi’s being the eigenvalues of R = ZZ′/N previously defined. Thus, (2.8) rewrites as

Ỹ = U′Y =
(√

D 0
)

V′t + σ?
√

1− η? ε̃ , (2.11)

where ε̃ = U′ε is a n× 1 centered Gaussian vector having a covariance matrix equal to identity.
We shall use repeatedly the following lemma which is proved in Section 2.7.4.

Lemma 2. Let Ỹ be defined by (2.11) and H be a n× n diagonal matrix, then

Var
(
Ỹ′HỸ|Z

)
= 2σ?4 Tr

[
H2 {(1− η?)IdRn + η?D}2

]
+ 3σ?4η?2

(
1

q
− 1

) ∑
1≤i≤N

M2
ii ,

where

M = V

(
DH 0

0 0

)
V′ ,

and

Var
(
Ỹ′HỸ|Z

)
≤ 2σ?4 Tr

[
H2 {(1− η?)IdRn + η?D}2

]
+ 3σ?4η?2

(
1

q
− 1

)
Tr[D2H2].

Another useful lemma will be the following.

Lemma 3. Under Assumption 1, let h : R+ → R+ be such that there exist α > 0 and C such
that for all n,

E

(
1

n

n∑
i=1

h(λi)
1+α

)
≤ C.

Then
1

n

n∑
i=1

h(λi) =

∫
h(λ)dνa(λ) + op(1).

The proof of this lemma follows from the application of Lemma 1 to the bounded function
h1h≤M , and the Markov inequality applied to the empirical mean of h1h>M .

Lemma 4. Under Assumption 1 let n,N →∞ be such that n/N → a > 0. Then there exists C
such that for all n,

E

[
1

n

n∑
i=1

λ2
i

]
≤ C.
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To prove the lemma, notice that
∑n

i=1 λ
2
i = Tr[ZZ′/N2]. But

E
(
Tr
[
(ZZ′)2

])
=

∑
k 6=k′

∑
i,j

E(Zi,kZj,k)E(Zi,k′Zj,k′) +
∑
k

∑
i

E(Z2
i,k)

= nN(N − 1) +N(N − 1)n(n− 1)

(
1

n− 1

)2

+ n2N

where the values of the involved expectations may be found in the proof of Lemma 1 in Section
2.7.4. We thus have

E

[
1

n

n∑
i=1

λ2
i

]
≤ 2 +

n

N

which ends the proof.

2.7.1 Proof of Theorem 1

The first step is to prove the consistency of η̂. We shall first prove that Ln(η) converges uniformly
for η ∈ [0, 1− δ] in probability to L(η) given by

L(η) = −2 log σ? − log

∫ [
η?(λ− 1) + 1

η(λ− 1) + 1

]
dµa(λ)−

∫
log (η(λ− 1) + 1) dµa(λ).

Using Lemma 2 with H with diagonal entries 1/(η(λi − 1) + 1), we get that

Var

[
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
|Z

]
≤ σ?4

n2

n∑
i=1

[
2

(
η?(λi − 1) + 1

η(λi − 1) + 1

)2

+ 3

(
1

q
− 1

)(
η?λi

η(λi − 1) + 1

)2
]

≤ σ?4

(
2 + 3

(
1

q
− 1

))
1

n2

n∑
i=1

(
λi + 1

δ

)2

since η ∈ [0, 1− δ]. Now, using Lemma 4 we get that

1

n2

n∑
i=1

(
λi + 1

δ

)2

= oP (1)

which leads to

1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
= E

[
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1
|Z

]
+ op(1)

= σ?2 1

n

n∑
i=1

η?(λi − 1) + 1

η(λi − 1) + 1
+ oP (1).

Now, using Lemma 3 we easily get that 1
n

∑n
i=1

η?(λi−1)+1
η(λi−1)+1 converges in probability to

∫
[η
?(λ−1)+1
η(λ−1)+1 ]dµa(λ)

and 1
n

∑n
i=1 log[(η(λi − 1) + 1)] converges in probability to

∫
log(η(λ − 1) + 1)dµa(λ) so that

Ln(η) = L(η) + oP (1).
In order to prove the uniform convergence of Ln to L in probability on [0, 1 − δ], we shall

use the following lemma which is proved in section 2.7.4.
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Lemma 5. Assume that for any η ∈ [0, 1− δ], Ln(η) converges in probability to L(η) and that

sup
η∈[0,1−δ]

∣∣L′n(η)
∣∣ = OP (1), as n tends to infinity, (2.12)

then
sup

η∈[0,1−δ]
|Ln(η)− L(η)| = oP (1), as n tends to infinity.

Let us now prove that supη∈[0,1−δ] |L′n(η)| = OP (1). Note that

L′n(η) =

(
1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2

)(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)−1

− 1

n

n∑
i=1

λi − 1

η(λi − 1) + 1
. (2.13)

A study of η 7→
(

1
n

∑n
i=1

Ỹ 2
i (λi−1)

{η(λi−1)+1}2

)(
1
n

∑n
i=1

Ỹ 2
i

η(λi−1)+1

)−1

shows that it is decreasing and

that it takes negative values for η ∈ [0, 1−δ], so that its absolute value is maximum for η = 1−δ.
Thus

sup
η∈[0,1−δ]

∣∣L′n(η)
∣∣ ≤ 1

δ

(
1

n

n∑
i=1

Ỹ 2
i |λi − 1|

)(
1

n

n∑
i=1

Ỹ 2
i

)−1

+
1

nδ

n∑
i=1

|λi − 1|

≤ 2

δ
+

1

δ

(
1

n

n∑
i=1

Ỹ 2
i λi

)(
1

n

n∑
i=1

Ỹ 2
i

)−1

+
1

nδ

n∑
i=1

λi.

By Lemma 2 with H = Id, we get

1

n

n∑
i=1

Ỹ 2
i = E

[
1

n

n∑
i=1

Ỹ 2
i |Z

]
+ op(1) =

σ2?

n

n∑
i=1

[η?(λi − 1) + 1)] + op(1)

= σ2?

∫
(η(λ− 1) + 1)dµa(λ) + op(1),

where the last equality comes from Lemma 3. In the same way, we get by using Lemma 2 with
H having its diagonal entries equal to λi and Lemma 3 that

1

n

n∑
i=1

Ỹ 2
i λi = σ2?

∫
λ(η(λ− 1) + 1)dµa(λ) + op(1) = OP (1).

Finally, we get from Lemma 3 that

1

n

n∑
i=1

λi =

∫
λdµa(λ) + op(1) = OP (1)

which ends the proof of (2.12). By Lemma 5, we thus have proved that

sup
η∈[0,1−δ]

|Ln(η)− L(η)| = oP (1). (2.14)
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Now, using Jensen’s inequality, we easily get that for all η ∈ [0, 1], L(η) ≤ L(η?), with
equality if and only if η = η?. This together with (2.14) gives

η̂ = η? + oP (1). (2.15)

The next step is to prove that
√
n(η̂ − η?) = OP (1). Let us first note that η̂ satisfies the

following equation:
√
n(η̂ − η?) = −

√
nL′n(η?)

L′′n(η̃)
, η̃ ∈ (η̂, η?) . (2.16)

We first prove the asymptotic convergence of L′′n(η̃).

Lemma 6. Let Y = (Y1, . . . , Yn)′ satisfy Model (2.8) with η? > 0 and the entries Wi,j of W
satisfy Assumption 1. Then, for all q in (0, 1], as n,N →∞ such that n/N → a ∈ (0, 1], for any
random variable η̃ such that η̃ ∈ (η̂, η?),

L′′n(η̃) = −σ?2γ2(a, η?) + oP (1).

Lemma 6 is proved in Section 2.7.4.
Let us now focus on the properties of L′n(η?). Using the following notation

Ui =
Ỹi√

η?(λi − 1) + 1
, (2.17)

we see that
√
nL′n(η?) can be rewritten as follows: 1√
n

n∑
i=1

Ui2 − 1

n

n∑
j=1

U2
j

 g(η?, λi)


(

1

n

n∑
i=1

U2
i

)−1

=

 1√
n

n∑
i=1

(Ui2 − 1
)

+

1− 1

n

n∑
j=1

U2
j

 g(η?, λi)


(

1

n

n∑
i=1

U2
i

)−1

=

{
1√
n

n∑
i=1

(
Ui

2 − 1
)
g(η?, λi)

}(
1

n

n∑
i=1

U2
i

)−1

−

 1√
n

n∑
j=1

(
Uj

2 − 1
)
{

1

n

n∑
i=1

g(η?, λi)

}(
1

n

n∑
i=1

U2
i

)−1

,

where

g(η, λ) =
λ− 1

η(λ− 1) + 1
.

But using Lemma 2 and Lemma 3 we get

Var

n−1/2
n∑
j=1

(Uj
2 − 1)|Z

 = OP (1)

Moreover, by Lemma 3, n−1
∑n

i=1 g(η?, λi) converges in probability to
∫
g(η?, λ)dµa(λ). Thus,

√
nL′n(η?) =

1√
n

n∑
i=1

(
Ui

2 − 1
)(

g(η?, λi)−
∫
g(η?, λ)dµa(λ)

)
+ oP (1), as n→∞ . (2.18)
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Using again Lemma 2 and Lemma 3 we obtain
√
nL′n(η?) = OP (1).

This, together with Lemma 6 and (2.16) ends the proof of Theorem 1.

2.7.2 Proof of Theorem 2

Notice first that all previous results may be used, replacing Assumption 1 by the assumption
that the Zi,j are i.i.d. standard Gaussian. Indeed, in this case, Lemma 1 reduces to the original
result of Marchenko & Pastur (1968), Lemma 3 only involves Lemma 1 and truncation argu-
ments, and the computations leading to Lemma 4 still hold. Thus, Theorem 1 and Lemma 6
also still hold.

Let us now prove that
√
nL′n(η?) converges in distribution to a centered Gaussian. Define

H the diagonal n× n matrix with diagonal entries

Hi =
1

η?(λi − 1) + 1

[
g(η?, λi)−

∫
g(η?, λ)dµa(λ)

]
.

Define

Ln =
1√
n

Ỹ′HỸ.

Then using (2.18) and Lemma 3 we have
√
nL′n(η?) = Ln − E[Ln|Z] + oP (1).

Now using Lemma 2 we get that setting γ2
n = Var [Ln|Z],

γ2
n = 2σ?4 1

n
Tr
[
H2 ((1− η)?IdRn + η?D)2

]
+ 3σ?4η?2

(
1

q
− 1

)
1

n

N∑
i=1

M2
i,i

= 2σ?4 1

n

n∑
i=1

(
g(η?, λi)−

∫
g(η?, λ)dµa(λ)

)2

+ 3σ?4η?2

(
1

q
− 1

)
1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l.

The first term in this sum converges as n,N →∞ to 2σ?4γ2(a, η?).
Under the assumption that the Zi,j are i.i.d. standard Gaussian, the matrix of eigenvectors V
is Haar distributed on the orthonormal matrices, and is independent of (λi)1≤i≤n, see Bai &
Silverstein (2010) chapter 10. Conditionally to the eigenvalues (λi)1≤i≤n, we thus get that

E

 1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l|D

 =

(
1

N

n∑
k=1

λkHk

)2

(1 + o(1))

converges to

a2

[∫
λ(λ− 1)

(η?(λ− 1) + 1)2
dµa(λ)−

∫
λ

(η?(λ− 1) + 1)
dµa(λ)

∫
λ− 1

(η?(λ− 1) + 1)
dµa(λ)

]2
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and

Var

 1

n

n∑
i=1

n∑
k,l=1

λkλlHkHlV
2
i,kV

2
i,l|D

 = oP (1)

so that

γ2
n = 2σ?4γ2(a, η?) + 3σ?4η?2

(
1

q
− 1

)
S(a, η?) + oP (1).

Denote ∆ the diagonal N ×N -matrix with diagonal entries ∆i = σ?
√
η?√
q πi. Let us now write

Ln − E(Ln|Z) = Ln − E [Ln|∆,Z] + E [Ln|∆,Z]− E [Ln|Z] .

We first have

E [Ln|∆,Z]− E [Ln|Z] = σ?2η?
1√
n

N∑
i=1

(
π2
i

q
− 1

)
Mi,i

whose variance, conditionally to Z is

s2
n,1 = σ?4η?2

(
1

q
− 1

)
1

n

N∑
i=1

M2
i,i.

In the same way as for γ2
n we get that

s2
n,1 = σ?4η?2

(
1

q
− 1

)
S(a, η?) + oP (1).

Let

ξi =

(
π2
i

q
− 1

)
Mi,i =

(
π2
i

q
− 1

) n∑
k=1

λk(λk − 1)

(η?(λk − 1) + 1)2
V 2
i,k.

Since η? > 0, the function λ 7→ λ(λ−1)
(η?(λ−1)+1)2

is bounded, and
∑n

k=1 V
2
i,k ≤

∑N
k=1 V

2
i,k = 1. Also,

the variables
(
π2
i
q − 1

)
are uniformly bounded by 1/q. Thus

1

n

n∑
i=1

E
[
ξ2
i 1|ξi|≥cn|Z

]
= 0

for large enough n. Then, by Lindeberg’s Theorem, conditionally to Z,

1

sn,1
(E [Ln|∆,Z]− E [Ln|Z])

converges in distribution to N (0, 1).
Let us now set

s2
n,2 = γ2

n − s2
n,1

and notice that s2
n,2 converges to

2σ?4γ2(a, η?) + 2σ?4η?2

(
1

q
− 1

)
S(a, η?).
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We shall prove that, conditionally to Z and ∆, (Ln−E(Ln|∆,Z))/sn,2 converges in distribution
to N (0, 1), and thus also unconditionally. Write

Ln =
1√
n

(w′ ε′)
B

(
w
ε

)
where B is the (N + n)× (N + n)-matrix

B =

(
∆ 0

0 σ?(1− η?)
1
2 IdRn

) V

(
DH 0

0 0

)
V′ Ṽ

√
DH

H
√

DṼ′ H

( ∆ 0

0 σ?(1− η?)
1
2 IdRn

)
.

Here, Ṽ is theN×n-matrix which consists of the first n columns of V. Let φ be the characteristic
function of (Ln − E(Ln|∆,Z))/sn,2 conditionally to Z and ∆. Notice first that if bj , j =
1, . . . , n+N are the eigenvalues of B, we may write

Ln − E [Ln|∆,Z] =
1√
n

N+n∑
j=1

bj(e
2
j − 1).

for random variables ej i.i.d. standard Gaussian. Thus

φ (t) =
N+n∏
j=1

[(
1− 2i

tbj
sn,2
√
n

)−1/2

exp

(
−i tbj
sn,2
√
n

)]

and Taylor expansion leads to

log φ (t) =

N+n∑
j=1

[
−1

2
log

(
1− 2i

tbj
sn,2
√
n

)
− i tbj

sn,2
√
n

]

= −t2 1

ns2
n,2

N+n∑
j=1

b2j +O

 1

n
√
ns3

n,2

N+n∑
j=1

b3j

 .
We shall now prove that 1

ns2n,2

∑N+n
j=1 b2j converges to 1/2. Tedious computations give

N+n∑
j=1

b2j = Tr(B2)

= Tr(∆M∆2M∆) + σ?4(1− η?2 Tr(H2) + 2σ?2(1− η?) Tr[∆2ṼDH2Ṽ′].

Using the distribution of V and its independence on D we get

E

N+n∑
j=1

b2j |D

 = 2σ?4 Tr
[
H2 ((1− η)?IdRn + η?D)2

]

+2σ?4η?2

(
1

q
− 1

)(
1

N

n∑
k=1

λkHk

)2

(1 + o(1))
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so that

E

 1

n

N+n∑
j=1

b2j |D

 = 2σ?4γ2(a, η?) + 2σ?4η?2

(
1

q
− 1

)
S(a, η?) + oP (1).

Moreover, tedious computations again give

Var

 1

n

N+n∑
j=1

b2j |D

 = oP (1),

and we obtain that

1

ns2
n,2

N+n∑
j=1

b2j =
1

2
+ oP (1).

We shall now prove that 1
n
√
ns3n,2

∑N+n
j=1 b3j = oP (1). To do so, it is enough to prove that

maxj |bj | = oP (
√
n). Notice that for any normed vector A = (A1, A2) in RN+n where A1 ∈ RN

and A2 ∈ Rn,
max
j
|bj | ≤ A′BA.

Now,

A′BA = A′1(∆M∆)A1 + 2σ?
√

1− η?A′1(∆Ṽ
√

DH)A2 + σ?2(1− η?)A′2HA2.

First, since η? > 0, all entries of H and D and HD are uniformly bounded and so are all entries
of ∆. We thus get A′2HA2 = O(1) and A′1(∆Ṽ

√
DH)A2 = O(1). Then, using the distribution

of V and its independence on D we get

E
[
A′1(∆M∆)A1|D

]
= O

(
1

N

n∑
i=1

λiHi

)

and
Var

[
A′1(∆M∆)A1|D

]
= oP (1),

so that A′BA = OP (1). We have thus proved that maxj |bj | = OP (1) = oP (
√
n).

Thus φ(t) converges in probability for all t to exp− t2

2 and the convergence may be strength-
ened by contradiction to an a.s. convergence, so that conditionally to Z and ∆, (Ln−E(Ln|∆,Z))/sn,2
converges in distribution to N (0, 1).

Now, conditionally to Z and ∆, (Ln − E(Ln|∆, Z))/sn,2 converges in distribution to a
Gaussian random variable independent of ∆. Thus conditionally to Z, Ln − E [Ln|∆, Z] and
E [Ln|∆, Z]−E [Ln|Z] converge in distribution to independent Gaussian variables, so that their
sum converges in distribution to a centered Gaussian with variance the sum of the variances,
namely the limit of γ2

n, and Theorem 2 is proved.
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2.7.3 Proof of Theorem 3

Using Lemma 6 and (2.16) , there remains to prove that
√
nL′n(η?) converges in distribution to

N (0, 2σ?4γ2(a, η?)) and that γ2
n converges in probability to γ2(a, η?).

Notice first that when q = 1, (U1, . . . , Un)|Z is a centered Gaussian vector with a covariance
matrix equal to σ?2 times the identity matrix. We shall prove that conditionally to Z,

√
nL′n(η?)

converges in distribution to N (0, 2σ?4γ2(a, η?)) so that the result still holds unconditionally.
Using (2.18), it is only needed to prove it for 1√

n

∑n
i=1

(
Ui

2 − 1
) (
g(η?, λi)−

∫
g(η?, λ)dµa(λ)

)
.

Now, conditionally to Z, the variance of

n∑
i=1

(
Ui

2 − 1
)(

g(η?, λi)−
∫
g(η?, λ)dµa(λ)

)
is

γ2
n =

2σ?4

n

n∑
i=1

(
g(η?, λi)−

∫
g(η?, λ)dµa(λ)

)2

.

Since η? > 0, g(η?, λ) is a bounded function of λ, and using Lemma 3,

γ2
n = 2σ?4γ2(a, η?)) + oP (1).

Also, setting ξi =
(
Ui

2 − 1
) (
g(η?, λi)−

∫
g(η?, λ)dµa(λ)

)
and C an upper bound of |g(η?, λ)|,

we get that for any c > 0,

1

n

n∑
i=1

E
[
ξ2
i 1|ξi|≥cn|Z

]
≤ 4C2σ?4E

[(
U1

2 − 1
)2
12C|U1

2−1|≥cn|Z
]

= 4C2σ?4E
[(
U1

2 − 1
)2
12C|U1

2−1|≥cn

]
= o(1),

where the first equality comes from the fact that the distribution of (U1, . . . , Un)|Z does not
depend on Z and is thus also the distribution of (U1, . . . , Un). Then, using Lindeberg’s Theorem,
conditionally to Z,

√
nL′n(η?) converges in distribution to N (0, 2σ?4γ2(a, η?)) and thus also

unconditionally.
The fact that γ2

n converges in probability to γ2(a, η?) is a straightforward consequence of Taylor
expansion, the fact that g(η?, λ) and its derivative with respect to η in the neighborhood of η?

are bounded functions of λ, and Slutzky’s Lemma.

2.7.4 Proofs of technical lemmas

Proof of Lemma 1

As a byproduct of Theorem 1.1, Corollary 1.1 and Remark 1.1 of Bai & Zhou (2008), we use
the following result to prove Lemma 1.

Theorem (Bai and Zhou (2008)). Let Z be a matrix of size n × N which columns, denoted
by Z1, . . . , ZN , are independent and let us denote Z̄ = 1

N

∑N
k=1 Zk. Let us also recall that

R = ZZ′/N and FR is its empirical spectral distribution defined by FR(x) = 1
n

∑n
k=1 1{λk≥x},

where λ1, . . . , λn are the eigenvalues of R. As N →∞, assume the following:

1. T = (ti,j) is a matrix such that E(Z̄i,jZm,j) = tm,i for all j .
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2. 1
Nmax
i 6=m

E(Z̄i,jZm,j)
2 → 0 uniformly in j ≤ N .

3. 1
N2

∑
Λ

(
E(Z̄i,jZm,j − tm,i)(Zi′,jZ̄m′,j − ti′,m′)

)2 → 0 uniformly in j ≤ N , with Λ = {(i,m, i′,m′) :
1 ≤ i,m, i′,m′ ≤ n}\{(i,m, i′,m′) : i = i′ 6= m = m′ or i = m′ 6= i′ = m}.

4. n
N → a ∈ (0,+∞).

5. The norm of T is uniformly bounded and F T tends to a degenerate distribution with mass
at 1/a.

Then, with probability 1, FR converges to the Marchenko-Pastur distribution defined in (2.9).

Observe that for all j = 1, . . . , N ,
n∑
i=1

Zi,j = 0 (2.19)

and
n∑
i=1

Z2
i,j = n. (2.20)

Moreover, for each j, the random variables (Zi,j)1≤i≤n are exchangeable. Thus, we deduce from
(2.20) that for all i = 1, . . . , n and j = 1, . . . , N , E(Z2

i,j) = 1. Hence, by (2.19), we get that

0 =

(
n∑
i=1

Zi,j

)2

=
n∑
i=1

Z2
i,j +

∑
1≤i 6=m≤n

Zi,jZm,j ,

which, by (2.20), implies that for all j = 1, . . . , N and i 6= m = 1, . . . , n,

E(Zi,jZm,j) = − n

n(n− 1)
= − 1

n− 1
. (2.21)

Thus, the matrix T = Tn defined in Theorem (Bai and Zhou (2008)) is equal to T = n/(n −
1)IdRn − Jn/(n − 1) , where Jn is a n × n matrix having all its entries equal to 1. Hence the
eigenvalues of T are 0 with multiplicity 1 and n/(n − 1) with multiplicity (n − 1), which gives
Condition 5. of Theorem (Bai and Zhou (2008)).

Let us then check Condition 2. of Theorem (Bai and Zhou (2008)). Observe that, for i 6= m,
E[(Zi,jZm,j − tm,i)2] = E(Z2

i,jZ
2
m,j)− t2m,i. By (2.20), for all j = 1, . . . , N ,

n2 =

(
n∑
i=1

Z2
i,j

)2

=

n∑
i=1

Z4
i,j +

∑
1≤i 6=m≤n

Z2
i,jZ

2
m,j .

Since the (Zi,j)1≤i≤n are exchangeable for each j = 1, . . . , N , we get that for all j = 1, . . . , N ,

n = E[Z4
1,j ] + (n− 1)E[Z2

1,jZ
2
2,j ] .

Thus, for all j = 1, . . . , N , E[Z2
1,jZ

2
2,j ] ≤ n/(n− 1), which with the definition of the tm,i’s gives

the result.
Let us now check Condition 3. of Theorem (Bai and Zhou (2008)). Since the random

variables (Zi,j)1≤i≤n are exchangeable, it is enough to prove that, uniformly in k,
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(i) E[Z4
1,k] = o(

√
n),

(ii) E[Z2
1,kZ

2
2,k]− 1 = o(1),

(iii) E[Z3
1,kZ2,k] = o(1),

(iv)
√
nE[Z2

1,kZ2,kZ3,k] = o(1),

(v) nE[Z1,kZ2,kZ3,kZ4,k] = o(1) , as n→∞.

Observe that (i) implies (ii). Using (2.19), by expanding 0 = (
∑n

i=1 Zi,k)
2
(∑n

i=1 Z
2
i,k

)
and

taking the expectation, we get that (i) and (iii) imply (iv). By expanding 0 = (
∑n

i=1 Zi,k)
4,

which comes from (2.19), and by taking the expectation, (i) and (iii) imply (v). Hence, it is
enough to prove (i) and (iii) to conclude the proof of Lemma 1.

Let us first prove (i). By the definition of Z1,k given in (2.4), we get that for all k, Z2
1,k ≤ n.

Hence,

Z2
1,k ≤

(W1,k −W k)
2

2σ2
k

1{s2k≥σ
2
k/2}

+ n1{s2k<σ
2
k/2}

,

and, by the assumptions on the Wi,k’s and on the σk’s,

E(Z4
1,k) ≤

W 2
M

κ2/2
+ n2P(σ2

k − s2
k > σ2

k/2) .

Theorem A of (Serfling, 1980, p. 201) implies that the second term of the previous inequality
tends to zero as n tends to infinity uniformly in k, which concludes the proof of (i).

Let us now prove (iii). Using (2.19), we get Z3
1,k (

∑n
i=1 Zi,k) = 0. By expanding this equation

and taking the expectation, we obtain that E(Z4
1,k)+

∑n
i=2 E(Z3

1,kZi,k) = 0. Since the (Zi,k)1≤i≤n

are exchangeable: E(Z3
1,kZ2,k) = −E(Z4

1,k)/(n − 1) = o(n−1/2), where the last equality comes
from (i).

Proof of Lemma 2

Using (2.11) and the independence assumptions, we get

Var(Ỹ′HỸ|Z)

= Var

[
v′V

(
DH 0
0 0

)
V′v + 2σ?

√
1− η?v′V

(√
D
0

)
Hε̃+ σ?2(1− η?)ε̃′Hε̃|Z

]
= Var

[
v′Mv|Z

]
+ 4σ?2(1− η?) Var

[
v′V

(√
D
0

)
Hε̃|Z

]
+ 2σ?4(1− η?)2 Tr(H2) , (2.22)

where M = V

(
DH 0
0 0

)
V′. Using the independence assumptions, we get that

4σ?2(1− η?) Var

[
v′V

(√
D
0

)
Hε̃|Z

]
= 4σ?4η?(1− η?) Tr(BB′)

= 4σ?4η?(1− η?) Tr(DH2) , (2.23)
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where B = V

(√
D
0

)
H. Moreover, E(v′Mv|Z) = σ?2η? Tr(D2H2) and

E
[
(v′Mv)2|Z

]
=
σ?4η?2

q2

2q2
∑

1≤i 6=j≤N
M2
ij + q2

∑
1≤i 6=i′≤N

MiiMi′i′ + 3q
∑

1≤i≤N
M2
ii


= σ?4η?2

2 Tr(M2)− 2
∑

1≤i≤N
M2
ii + Tr(M)2 −

∑
1≤i≤N

M2
ii +

3

q

∑
1≤i≤N

M2
ii


= σ?4η?2

2 Tr(D2H2) + Tr(M)2 + 3

(
1

q
− 1

) ∑
1≤i≤N

M2
ii

 .

Thus,

Var
[
v′Mv

∣∣Z] = σ?4η?2

2 Tr(D2H2) + 3

(
1

q
− 1

) ∑
1≤i≤N

M2
ii

 . (2.24)

The proof of the equality in Lemma 2 follows from (2.22), (2.23) and (2.24). The proof of the
inequality in Lemma 2 follows now from∑

1≤i≤N
M2
ii ≤

∑
1≤i,j≤N

M2
ij = Tr[D2H2].

Proof of Lemma 5

Let ε > 0 and let {η1 < · · · < ηK(ε)} be a grid of [0, 1 − δ] such that |ηj − ηj+1| < ε for all
j ∈ {0, . . . ,Kε} then

sup
η∈[0,1−δ]

|Ln(η)− L(η)| ≤ sup
j∈{1,...,Kε}

[
sup

η′∈[ηj ,ηj+1]
|Ln(η′)− Ln(ηj)|+ |Ln(ηj)− L(ηj)|

+ sup
η′∈[ηj ,ηj+1]

|L(ηj)− L(η′)|

]
≤ ε sup

η∈[0,1−δ]
|L′n(η)|+ sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)|+ ω(ε),

where ω(ε) is the modulus of continuity of L, which is continuous on the compact [0, 1 − δ]
and thus uniformly continuous on this compact. Since sup

η∈[0,1−δ]
|L′n(η)| = OP (1) then, for every

β > 0, there exists C such that for all n, P( sup
η∈[0,1−δ]

|L′n(η)| ≥ C) ≤ β. Let α > 0 and let us
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consider the ε-grid such that ε ≤ α/3C and ω(ε) ≤ α/3, thus we get that

P( sup
η∈[0,1−δ]

|Ln(η)− L(η)| ≥ α)

≤ P( sup
η∈[0,1−δ]

∣∣L′n(η)
∣∣ ≥ C) + P( sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)| ≥ α− Cε− ω(ε))

≤ P( sup
η∈[0,1−δ]

∣∣L′n(η)
∣∣ ≥ C) + P( sup

j∈{1,...,Kε}
|Ln(ηj)− L(ηj)| ≥

α

3
)

≤ P( sup
η∈[0,1−δ]

∣∣L′n(η)
∣∣ ≥ C) +

Kε∑
j=1

P(|Ln(ηj)− L(ηj)| ≥
α

3
),

which concludes the proof of Lemma 5 since each term tends to zero as n tends to infinity.

Proof of Lemma 6

The second derivative of Ln is given by

L′′n(η) =

(
− 2

n

n∑
i=1

Ỹ 2
i (λi − 1)2

{η(λi − 1) + 1}3

)(
1

n

n∑
i=1

Ỹ 2
i

{η(λi − 1) + 1}

)−1

+

(
1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2

)2(
1

n

n∑
i=1

Ỹ 2
i

{η(λi − 1) + 1}

)−2

(2.25)

+
1

n

n∑
i=1

(λi − 1)2

{η(λi − 1) + 1}2
.

In particular for η = η?, we have

1

n

n∑
i=1

Ỹ 2
i

{η?(λi − 1) + 1}
= 1 + oP (1),

and using as previously Lemma 2, Lemma 3 and the fact that all functions of λ involved in the
empirical means are bounded since η? > 0, we get

2

n

n∑
i=1

Ỹ 2
i (λi − 1)2

{η(λi − 1) + 1}3
=

2σ?2

n

n∑
i=1

(λi − 1)2

{η(λi − 1) + 1}2
+ oP (1)

= 2σ?2
∫

(λ− 1)2

{η(λ− 1) + 1}2
dµa(λ) + oP (1)

and

1

n

n∑
i=1

Ỹ 2
i (λi − 1)

{η(λi − 1) + 1}2
=

σ?2

n

n∑
i=1

(λi − 1)

{η(λi − 1) + 1}
+ oP (1)

= σ?2
∫

(λ− 1)

{η(λ− 1) + 1}
dµa(λ) + oP (1)

leading to
L′′n(η) = −σ?2γ2(a, η?) + oP (1).
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Using Slutzky’s Lemma and η̂ = η? + oP (1), there just remains to prove that for small enough
α > 0,

sup
|η−η?|≤α

|L′′n(η)− L′′n(η)| = Op(α).

But this comes easily from

sup
|η−η?|≤α

|L′′n(η)− L′′n(η)| ≤ α sup
|η−η?|

|L(3)
n (η)|

where L
(3)
n (η) is the third derivative of Ln(η), and a similar handling of empirical means as

before. Indeed, all functions of λ involved are bounded as soon as α is such that η? ≥ 2α.
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Chapter 3

Improving heritability estimation by
a variable selection approach in high
dimensional sparse linear mixed
models

The content of this chapter is contained in the article sumbitted for publication:
A. Bonnet, C. Lévy-Leduc, E. Gassiat, R. Toro, and T. Bourgeron. Improving heritability by a
variable selection approach in sparse high dimensional linear mixed models, 2016,
http://arxiv.org/abs/1507.06245v3.
The method which is presented is implemented in the EstHer R package, available on the CRAN.

Content

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Description of the method . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Variable selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Heritability estimation and confidence interval . . . . . . . . . . . . . . 53

3.3.3 Additional fixed effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Results in very sparse scenarios . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Results when the number of causal SNPs is high . . . . . . . . . . . . . 59

3.5 A criterion to decide whether we should apply EstHer or HiLMM . 60

3.6 Results after applying the decision criterion and comparison to
other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.1 Statistical performances . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 Computational times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Applications to genetic data . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Calibration of the threshold . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.2 Application of the decision criterion . . . . . . . . . . . . . . . . . . . . 66

47



V
ar

ia
b

le
se

le
ct

io
n

Chapter 3 - Improving heritability estimation by a variable selection approach in high dimensional
sparse linear mixed models

3.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Abstract

Motivated by applications in neuroanatomy, we propose a novel methodology for estimating the
heritability which corresponds to the proportion of phenotypic variance which can be explained
by genetic factors. Estimating this quantity for neuroanatomical features is a fundamental chal-
lenge in psychiatric disease research. Since the phenotypic variations may only be due to a
small fraction of the available genetic information, we propose an estimator of the heritability
that can be used in high dimensional sparse linear mixed models. Our method consists of three
steps. Firstly, a variable selection stage is performed in order to recover the support of the ge-
netic effects – also called causal variants – that is to find the genetic effects which really explain
the phenotypic variations. Secondly, we propose a maximum likelihood strategy for estimating
the heritability which only takes into account the causal genetic effects found in the first step.
Thirdly, we compute the standard error and the 95% confidence interval associated to our her-
itability estimator thanks to a nonparametric bootstrap approach. Our contribution consists
in providing an estimation of the heritability with standard errors substantially smaller than
methods without variable selection when the genetic effects are very sparse. Since the real ge-
netic architecture is in general unknown in practice, we also propose an empirical criterion which
allows the user to decide whether it is relevant to apply a variable selection based approach or
not. We illustrate the performance of our methodology, implemented in the R package EstHer,
on synthetic and real neuroanatomic data coming from the Imagen project. We also show that
our approach has a very low computational burden and is very efficient from a statistical point
of view.

3.1 Introduction

For many complex traits in human population, there exists a huge gap between the genetic
variance explained by population studies and the variance explained by specific variants found
thanks to genome wide association studies (GWAS). This gap has been called by Maher (2008)
and Manolio et al. (2009) the “dark matter” of the genome or the “dark matter” of heritability.
Various population studies have shown that up to 80% of the variability of neuroanatomical
phenotypes such as the brain volume could be explained by genetic factors, see for instance
Stein et al. (2012). This result is very important since several psychiatric disorders are shown
to be associated to neuroanatomical changes, for instance macrocephaly and autism Steen et al.
(2006) or reduced hippocampus and schizophrenia Amaral et al. (2008). Estimating properly
the impact of the genetic background on neuroanatomical changes is a crucial challenge in order
to determine afterwards if this background can either be a risk factor or a protective factor
from developing psychiatric disorders. The GWAS studies performed for instance by Stein et al.
(2012) identified genetic variants involved in the neuroanatomical diversity, which contributes
to understand the impact of genetic factors. However, in the course of these studies, it is
shown that this approach only explains a small proportion of the phenotypic variance. In order
to understand the nature of the genetic factors responsible for major variations of the brain
volume, Toro et al. (2015) used linear mixed models (LMM) to consider the effects of all the
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common genetic diversity characterized by the Single Nucleotide Polymorphisms (SNPs). This
approach had been suggested by Yang et al. (2011) to study the effects of the SNPs on the
height variations. The model they considered is a LMM defined as follows:

Y = Xβ + Zu + e , (3.1)

where Y = (Y1, . . . , Yn)′ is the vector of observations (phenotypes), X is a n × p matrix of
predictors, β is a p× 1 vector containing the unknown linear effects of the predictors, Z is the
genetic information matrix, u and e correspond to the random effects. More precisely, Z is a
version of W with centered and normalized columns, where W is defined as follows: Wi,j = 0
(resp. 1, resp. 2) if the genotype of the ith individual at locus j is qq (resp. Qq, resp. QQ)
where pj denotes the frequency of the allele q at locus j. In (3.1), the vector e corresponds to
the environment effects and the vector u corresponds to the genetic random effect, that is the
j-th component of u is the effect of the j-th SNP on the phenotype. In the modeling of Yang
et al. (2011), all the SNPs have an effect on the considered phenotype, that is

u ∼ N
(

0, σ?u
2IdRn

)
and e ∼ N

(
0, σ?e

2IdRn
)
. (3.2)

The covariance matrix of Y can thus be written as:

Var(Y) = Nσ?u
2R + σ?e

2IdRn , where R =
ZZ′

N
,

and the parameter η? defined as

η? =
Nσ?u

2

Nσ?u
2 + σ?e

2 (3.3)

is commonly called the heritability (Yang et al. (2011),Pirinen et al. (2013)), and corresponds
to the proportion of phenotypic variance which is determined by all the SNPs.

Since all SNPs are not necessarily causal, it seems more realistic to extend the previous
modeling by assuming that the genetic random effects can be sparse, that is only a proportion
q of the components of u are non null:

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2), for all 1 ≤ i ≤ N, (3.4)

where q is in (0, 1], and δ0 is the point mass at 0. Then the definition of η? has to be adjusted
as follows:

η? =
Nqσ?u

2

Nqσ?u
2 + σ?e

2 . (3.5)

It corresponds to the proportion of phenotypic variance which is due to a certain number of
causal SNPs which are, obviously, unknown. Let us emphasize that, in most applications, the
proportion q of causal SNPs is also unknown, and that it may happen that the scientist has no
idea how small q is.

When q = 1, that is when considering the modeling (3.2), most proposed approaches to
estimate the heritability derive from a likelihood methodology. We can quote for instance
the REstricted Maximum Likelihood (REML) strategies, originally proposed by Patterson &
Thompson (1971) and then developed in Searle et al. (1992). Several approximations of the
REML algorithm have also been proposed, see for instance the software EMMA proposed by
Pirinen et al. (2013) or the software GCTA (Yang et al. (2011),Yang et al. (2010)).
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We proposed in Bonnet et al. (2015) another method based on a maximum likelihood strategy
to estimate the heritability and implemented in the R package HiLMM. We proved in Bonnet
et al. (2015) the following theoretical result: though the computation of the likelihood is based on
the modeling assumption (3.2), the estimator is consistent (unbiased) under the less restrictive
modeling assumption (3.4). We believe this consistency result remains true for the estimators
produced using the algorithms REML, EMMA, GCTA. But we also proved that, when q 6= 1,
the standard error is not the one computed by the softwares when q = 1 and may be very large.
We obtained a theoretical formula for the asymptotic variance of the estimator (depending in
particular on q) and conducted several numerical experiments to understand how this asymptotic
variance gets larger depending on the various quantities, in particular with respect to q and the
ratio n/N . We observed that this variance indeed gets larger when q gets smaller, so that the
accuracy of the heritability estimator is slightly deteriorated when all SNPs are not causal. Thus,
a first problem is to find a method able to produce an estimator with smaller standard error
than those obtained using only likelihood strategies. Also, since this standard error depends on
q, a second problem is to produce a confidence interval one could trust without knowing q.

The goal of this paper is to address both problems. The results we obtained in Bonnet et al.
(2015) suggest the following. If we knew the set of causal SNPs, then, considering only this
(small) subset in the genetic information matrix, we would obtain with HiLMM an estimator
having a smaller standard error than when using all SNPs in the genetic information matrix.
Thus, our new practical method contains a variable selection step.

Variable selection and signal detection in high dimensional linear models have been exten-
sively studied in the past decade and there are many papers on this subject. Among them, we
can quote Meinshausen & Bühlmann (2010) and Beinrucker et al. (2014) about variable selection
and references therein. The case of high dimensional mixed models has received little attention.
As far as variable selection methods in the random effects of LMM are concerned, we are only
aware of the work of Fan & Li (2012) and Bondell et al. (2010). Let us mention that regarding
the estimation of heritability with possible sparse effects, there is also the bayesian approach of
Guan & Stephens (2011) and Zhou et al. (2013), which proposes an interesting estimator for
the heritability but which is computationally very demanding. Notice that, in our framework,
we are not far from the situation for which it is proved in Verzelen (2012) that the support
cannot be fully recovered, which happens when Nq log(1/q) >> n. The variable selection step
we propose takes elements from both ultrahigh dimension methods (Fan & Lv (2008), Ji & Jin
(2012), Meinshausen & Bühlmann (2010)) and classical variable selection techniques (Tibshirani
(1996)).

The second step of our method is to apply HiLMM using the selected subset of causal SNPs
produced by the first step. Finally, we propose a non parametric bootstrap procedure to get
confidence intervals with prescribed coverage. The whole procedure requires only a few minutes
of computation.

To conclude, we propose in this paper a very fast method to estimate the heritability and
construct a confidence interval substantially smaller than without variable selection when the
genetic effects are very sparse. Since the real genetic architecture is in general unknown in
practice, we also propose an empirical criterion which allows the user to decide whether it is
relevant to apply a variable selection based approach or not. Our method has also the advantage
to return a list of SNPs possibly involved in the variations of a given quantitative feature. This
set of SNPs can further be analyzed from a biological point of view.

The paper is organized as follows. Section 3.2 describes the data set which motivated our
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work. Section 3.3 provides the detailed description of the method, and Section 3.4 displays the
results of the numerical study. They were obtained by using the R package EstHer that we
developed and which is available from the Comprehensive R Archive Network (CRAN). The
simulation results illustrate the performance of our method on simulations and show that it is
very efficient from a statistical point of view. In Section 3.5, we provide an empirical criterion
to help the user to decide whether it is relevant to apply a variable selection based approach or
not. In Section 3.6, we propose a thorough comparison of our approach with other methods in
terms of statistical and numerical performances. Finally, the results obtained on the brain data
described in Section 3.2 can be found in Section 3.7. We also provide a discussion section at the
end of the paper.

3.2 Description of the data

We worked on data sets provided by the European project Imagen, which is a major study on
mental health and risk taking behaviour in teenagers. The research program includes question-
naires, interviews, behaviour tests, neuroimaging of the brain and genetic analyses. We will
focus here on the genetic information collected on approximately 2000 teenagers as well as mea-
surements of the volume of several features: the intracranial brain volume (icv), the thalamus
(th), the caudate nucleus (ca), the amygdala (amy), the globus pallidus (pa), the putamen (pu),
the hippocampus (hip), the nucleus accubens (acc) and the total brain volume (bv). Figure 3.1,
which comes from Toro et al. (2015), is a schematic representation of these different areas of
the brain. The data set contains n = 2087 individuals and N = 273926 SNPs, as well as a set
of fixed effects, which in our case are the age (between 12 and 17), the gender and the city of
residency (London, Nottingham, Dublin, Dresden, Berlin, Hamburg, Mannheim and Paris).

Figure 3.1 – Different regions of the brain (this figure is taken from Toro et al. (2015)).

In the following, our goal will thus be to provide a method to estimate the heritability of
these neuroanatomical features.
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3.3 Description of the method

The method that we propose can be split into two main parts: the first one consists in a
variable selection approach and the second one provides an estimation of the heritability and
the associated 95% confidence interval which is computed by using non parametric bootstrap.

At the beginning of this section we shall consider the case where there is no fixed effects,
that is

Y = Zu + e (3.6)

but we explain at the end of this section how to deal with fixed effects. Let us first describe our
variable selection method which consists of three steps.

3.3.1 Variable selection

Inspired by the ideas of Fan & Lv (2008), we do not directly apply a Lasso type approach since
we are in an ultra-high dimension framework. Hence, we start our variable selection stage by
the SIS (Sure Independence Screening) approach, as suggested by Fan & Lv (2008), in order to
select the components of u which are the most correlated to the response Y and then we apply
a Lasso criterion which depends on a regularization parameter λ. This regularization parameter
is usually chosen by cross validation but here we decided to use the stability selection approach
devised by Meinshausen & Bühlmann (2010) which provided better results in our framework.

Step 1: Empirical correlation computation

The first step consists in reducing the number of relevant columns of Z by trying to remove those
associated to null components in the vector u. For this, we use the SIS (Sure Independence
Screening) approach proposed by Fan & Lv (2008) and improved by Ji & Jin (2012) in the
ultra-high dimensional framework. More precisely, we compute for each column j of Z:

Cj =
∣∣∣∑YiZi,j

∣∣∣ ,
and we only keep the Nmax columns of Z having the largest Cj . In practice, we choose the
conservative value Nmax = n, inspired by the comments of Fan & Lv (2008) on the choice of
Nmax.

In the sequel, we denote by Zred the matrix containing these n relevant columns. This
first step is essential for our method. Indeed, on the one hand, it substantially decreases the
computational burden of our approach and on the other hand, it reduces the size of the data
and thus makes classical variable selection tools efficient.

Step 2: LASSO criterion and stability selection

In order to refine the set of columns (or components of u) selected in the first step and to remove
the remaining null components in the vector u, we apply a Lasso criterion originally devised
by Tibshirani (1996) which has been used in many different contexts and has been thouroughly
theoretically studied. It consists in minimizing with respect to u the following criterion:

Critλ(u) = ‖Y − Zredu‖22 + λ‖u‖1 , (3.7)
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which depends on the parameter λ and where ‖x‖22 =
∑p

i=1 x
2
i and ‖x‖1 =

∑p
i=1 |xi| for x =

(x1, . . . , xp). The choice of the regularization parameter λ is crucial since its value may strongly
affect the selected variables set. Different approaches have been proposed for choosing this
parameter such as cross-validation which is implemented for instance in the glmnet R package.
Here we shall use the following strategy based on the stability selection proposed by Meinshausen
& Bühlmann (2010).

The vector of observations Y is randomly split into several subsamples of size n/2. For each
subsample, we apply the LASSO criterion for a fixed parameter λ and the selected variables
are stored. Then, for a given threshold, we keep in the final set of selected variables only the
variables appearing a number of times larger than this threshold. In practice, we generated
50 subsamples of Y and we chose the parameter λ as the smallest value of the regularization
path. As explained in Meinshausen & Bühlmann (2010), such a choice of λ ensures that some
overfitting occurs and hence that the set of selected variables is large enough to include the true
variables with high probability.

The matrix Z containing only the final set of selected columns will be denoted by Zfinal in
the following, where Nfinal denotes its number of columns.

The threshold has to be chosen carefully: keeping too many columns in Zfinal could indeed
lead to overestimating the heritability and, on the contrary, removing too many columns of Z
could lead to underestimating the heritability. In the “small q” situations where it is relevant
to use a variable selection approach a range of thresholds in which the heritability estimation is
stable will appear as suggested by Meinshausen & Bühlmann (2010). In practice, we simulate
observations Y satisfying (3.6), by using the matrix Z, for different values of q and for different
values η? and we observe that this stability region for the threshold appear for small values of
q. This procedure is further illustrated in Section 3.4.

3.3.2 Heritability estimation and confidence interval

Heritability estimation

For estimating the heritability, we used the approach that we proposed in Bonnet et al. (2015).
It is based on a maximum likelihood strategy and was implemented in the R package HiLMM.
Let us recall how this method works.

In the case where q = 1, which corresponds to the non sparse case,

Y ∼ N
(

0, η?σ?2R + (1− η?)σ?2IdRn
)
,

with σ?2 = Nσ?2u + σ?2e and R = ZfinalZ
′
final/Nfinal, where Zfinal denotes the matrix Z in which

the columns selected in the variable selection step described in Section 3.3.1 are kept.
Let U be defined as follows: U′U = UU′ = IdRn and URU′ = diag(λ1, . . . , λn), where the

last quantity denotes the diagonal matrix having its diagonal entries equal to λ1, . . . , λn. Hence,
in the case where q = 1,

Ỹ = U′Y ∼ N (0,Γ) with Γ = diag(η?σ?2λ1 + (1− η?)σ?2, . . . , η?σ?2λn + (1− η?)σ?2), (3.8)

where the λi’s are the eigenvalues of R.
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We propose to define η̂ as a maximizer of the log-likelihood

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (3.9)

where the Ỹi’s are the components of the vector Ỹ = U′Y.
We now explain how to obtain accurate confidence intervals for the heritability by using a

non parametric bootstrap approach.

Bootstrap confidence interval

We used the following procedure:

- Step 1: We estimate η? and σ?2 by using our approach described in the previous subsection.
The corresponding estimators are denoted η̂ and σ̂.

- Step 2: We compute Ynew = Γ̂−1/2Ỹ, where Ỹ is defined in (3.8) and Γ̂ has the same
structure as Γ defined in (3.8) except that η? and σ? are replaced by their estimators η̂
and σ̂, respectively.

- Step 3: We create K vectors (Ynew,i)1≤i≤K from Ynew by randomly choosing each of its
components among those of Ynew.

- Step 4: We then build K new vectors (Ỹsamp,i)1≤i≤K as follows: Ỹsamp,i = Γ̂Ynew,i. For
each of them we estimate the heritability. We thus obtain a vector of heritability estimators
(η̂1, ..., η̂K).

- Step 5: For obtaining a 95% bootstrap confidence interval, we order these values of η̂k
and keep the ones corresponding to the b0.975×Kc largest and the b0.025×Kc smallest,
where bxc denotes the integer part of x. These values define the upper and lower bounds
of the 95% bootstrap confidence interval for the heritability η?, respectively.

A bootstrap estimator of the variance can be obtained by computing the empirical variance
estimator of the η̂k’s. In practice, we chose K = 80 replications.

In Step 2 of the previous algorithm, we should be in the non sparse case q = 1 thanks to the
variable selection stage. Hence, the covariance matrix of Ynew should be close to identity.

Observe that our resampling technique is close to the one proposed by Abney (2015) for
building permutation tests in linear mixed models.

3.3.3 Additional fixed effects

The method described above does not take into account the presence of fixed effects. For dealing
with such effects we propose to use the following method, which mainly consists in projecting
the observations onto the orthogonal of Im(X), the image of X, to get rid of the fixed effects.
In practice, instead of considering Y and Z we consider Ỹ = A′Y and Z̃ = A′Z, where A
is a n × (n − d) matrix (d being the rank of the fixed effects matrix), such that AA′ = PX,
A′A = IdRn−d and PX = IdRn −X(X′X)−1X′. This procedure was for instance used by Fan &
Li (2012).
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3.4 Numerical study

We present in this section the numerical results obtained with our approach which is implemented
in the R package EstHer.

3.4.1 Simulation process

Since in genetic applications, the number n of individuals is very small with respect to the
number N of SNPs, we chose n = 2000 and N = 100000 in our numerical study. We also set
σ?2u = 1, we shall consider different values for q and we shall change the value of σ?e in order
to have the following values for η?: 0.4, 0.5, 0.6 and 0.7. We generate a matrix W such that
its columns Wj are independent binomial random variables of parameters n and pj , where pj
is randomly chosen in [0.1, 0.5]. We compute Z by centering and empirically normalizing the
matrix W. The random effects are generated according to Equation (3.4) and then we compute
a vector of observations such that Y = Zu + e.

We can make two important comments about the previous simulation process. Firstly, we
generated a matrix W with independent columns, that is we assume that the SNPs are not
correlated. Since this assumption may not be very realistic in practice, we provide in Section
3.4.2 some additional simulations where the generated matrix W has been replaced by the real
matrix W coming from the IMAGEN project. Secondly, we did not include fixed effects but we
show some results in Section 3.4.2 when fixed effects are taken into account.

3.4.2 Results in very sparse scenarios

In this section, we shall focus on the performances of our method in a very sparse scenario,
that is 100 causal SNPs out of 100,000. We will describe all the results in terms of heritability
estimation, support recovery and computational times in this particular case, then we will study
other sparsity scenarios.

Choice of the threshold

In order to determine the threshold, we apply the procedure described in Section 3.3.1 and 3.3.2.
Figure 3.2 displays the mean of the absolute value of the difference between η? and the estimated
value η̂ for different thresholds and for different values of η? obtained from 10 replications. We
can see from this figure that in the case where the number of causal SNPs is relatively small:
100, that is q = 10−3, our estimation procedure provides relevant estimations of the heritability
for a range of thresholds around 0.75. Moreover, the optimal threshold leading to the smallest
gap between η̂ for different values of η? is 0.76. We will use this value in the following numerical
study. However, the way of choosing the threshold will be further discussed, especially in the
section dedicated to the study of the genetic data.

Confidence intervals

We use the non parametric boostrap approach described in Section 3.3 in order to compute the
confidence intervals associated to the estimations of the heritability. Table 3.1 shows that the
95% confidence intervals obtained by bootstrap and the empirical confidence intervals are very
similar. The empirical confidence intervals are computed as follows: the different estimations
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Figure 3.2 – Absolute difference between η? and η̂ for thresholds from 0.6 to 0.9 and for q = 10−3

(100 causal SNPs).

Table 3.1 – 95 % confidence intervals for η̂ obtained empirically and by our Bootstrap method.

η? 0.4 0.5 0.6 0.7

Bootstrap [0.353 ; 0.503] [0.413 ; 0.565] [0.494 ; 0.654] [0.596 ; 0.738]

Empirical [0.391 ; 0.470] [0.449 ; 0.542] [0.496 ; 0.645] [0.618 ; 0.720]

of η? obtained along the different replications are ordered, the b0.975 × Mc largest and the
b0.025×Mc smallest values correspond to the upper (resp. lower) bound of the 95% empirical
confidence interval. Here, bxc denotes the integer part of x and M is the number of replications.
From Table 3.1, we can see that the empirical confidence intervals are included in the bootstrap
intervals, which means that our approach provides conservative intervals.

Comparison between the methods with and without selection

Our results are compared to those obtained if we do not perform the selection before the estima-
tion, that is with the method implemented in HiLMM (”without”), but also with an approach
which assumes the position of the non null components to be known (oracle). The results are
displayed in Figure 3.3 and in Table 3.2. In this table, the confidence intervals displayed for the
lines ”Oracle” and ”without” are obtained by using the asymptotic variance derived in Bonnet
et al. (2015) which corresponds to the classical inverse of the Fisher information in the case
q = 1. We observe that our method without the selection step provides similar results, that is
almost no bias but a very large variance due to the framework N � n. Our method EstHer
considerably reduces the variance compared to this method and exhibits performances close to
those of the oracle approach which, contrary to our approach, knows the position of the non
null components.

Additional fixed effects

We generated some synthetic data according to the process described in Section 3.4.1 but we
added a matrix of fixed effects containing two colums. Figure 3.4 (a) displays the corresponding
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Table 3.2 – 95 % confidence intervals for η̂ obtained by our approach, GCTA, the oracle approach
and the approach without selection (“without”).

η? 0.4 0.5 0.6 0.7

EstHer [0.353 ; 0.503] [0.413 ; 0.565] [0.494 ; 0.654] [0.596 ; 0.738]

Oracle [0.362 ; 0.472] [0.414 ; 0.563] [0.529 ; 0.670] [0.619 ; 0.745]

without [0.120 ; 0.880] [0.102 ; 0.812] [0.320 ; 0.938] [0.349 ; 0.932]
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Figure 3.3 – Estimation of the heritability and the corresponding 95% confidence intervals when
q =10−3, and for different values of η? : (a) η? = 0.4, (b) η? = 0.5, (c) η? = 0.6, (d) η? = 0.7.
The means of the heritability estimators (displayed with black dots), the means of the lower and
upper bounds of the 95% confidence intervals are obtained from 20 replicated data sets for the
different methods: without selection (“without”), “oracle” which knows the position of the null
components and EstHer. The horizontal gray line corresponds to the value of η?.

results which show that the presence of fixed effects does not alter the heritability estimation.

Simulations with the matrix W of the IMAGEN data set

We conducted some additional simulations in order to see the impact of the linkage disequi-
librium, that is the possible correlations between the columns of Z. Indeed, in the previous
numerical study, we generated a matrix W with independent columns. The matrix W that
we use now to generate the observations is the one from our genetic data set, except that we
truncated it in order to have n = 2000 and N = 100000. The results of this additional study
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are presented in Figure 3.4 (b). We can see that they are similar to those obtained previously
in Figure 3.3, which means that our method does not seem to be sensitive to the presence of
correlation between the columns of W.
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Figure 3.4 – Estimated value of the heritability with 95 % confidence intervals. The results are
displayed for several values of η?: 0.5, 0.6 and 0.7. (a) The data sets were generated including
fixed effects. (b) The matrix Z used to generate data sets comes from the IMAGEN data. The
black dots correspond to the mean of η̂ over 10 replications and the crosses are the real value of
η?.

Computational times

The implementation that we propose in the R package EstHer is very efficient since it only takes
45 seconds for estimating the heritability and 300 additional seconds to compute the associated
95% confidence interval. These results have been obtained with a computer having the following
configuration: RAM 32 GB, CPU 4 × 2.3 GHz.

Recovering the support

When the number of causal SNPs is reasonably small, our variable selection method is efficient
to estimate the heritability and we wonder if it is reliable as well to recover the support of the
random effects. In Figure 3.5, we see the proportion of support estimated by our method when
there are 100 causal SNPs: our method selects around 130 components. We then focus on the
proportion of the real support which has been captured by our method: we see that it may
change according to η?. Indeed, the higher η?, the higher this proportion. Nevertheless, even in
the worst case, that is η? = 0.5, Figure 3.6 shows that even if we keep only 30% of the real non
null components, we select the most active ones.

The ability of recovering the support in linear models has been studied by Verzelen (2012)
in ultra high dimensional cases. The author shows that with a non null probability, the support
cannot be estimated under some numerical conditions on the parameters q, N and n (namely
if there are considerably more variables N than observations n, and if the number of non null
components qN is relatively high). In this simulation study, even when we consider small
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Figure 3.5 – (a) Boxplots of the length of the set of selected variables with EstHer for 40
repetitions. The real number of non null components is 100. (b) Boxplots of the proportion of
the real non null components captured in the set of selected variables.

values of q (for instance q = 10−3, that is 100 causal SNPs), we are not far from to the ultra
high dimensional framework described in Verzelen (2012), which can explain the difficulties to
recover the full support.

3.4.3 Results when the number of causal SNPs is high

In subsection 3.4.2 we show the performance of our method in the case where the proportion of
causal SNPs q is small, that is around 10−3. In this subsection, we focus on a more polygenic
scenario, that includes the cases where thousands of SNPs or ten of thousands of SNPs are
causal.

Results when there are SNPs with moderate and weak effects

We first focus on the statistical performance of EstHer when there are a lot of SNPs (1000 or
10000) with small effects (for example, that explain 5% of the phenotypic variations), and a
small number (around 100) with moderate effects. We can see from Figure 3.7 that, in this case,
EstHer provides unbiased estimations with a small variance.

Results when all SNPs have moderate effects

If all causal SNPs have moderate effects and if the number of these causal SNPs is high, namely
greater than 1000, EstHer underestimates the heritability. These results are displayed in Figure
3.8. Moreover, we can see from Figure 3.9 that there is no threshold choice that can provide
accurate estimations of heritability for all values of η?.
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Figure 3.6 – Barplots of the proportion of components found by our method as function of
the most efficient variables. For example, the first bar is the proportion of the 10 % higher
components that we captured with our selection method. The histograms are displayed for
several values of η?: 0.5 (a), 0.6 (b), 0.7 (c).

3.5 A criterion to decide whether we should apply EstHer or
HiLMM

On the one hand, we observed that applying HiLMM provides unbiased estimations of the
heritability, no matter the number of causal SNPs. However, the main drawback of this estimator
is its very large variance. On the other hand, if the number of causal SNPs is not too high, EstHer
provides unbiased estimations of the heritability with standard errors substantially smaller than
HiLMM. However, if the number of causal SNPs is high, EstHer underestimates the heritability.
These observations are similar to those made by Zhou et al. (2013), who built an hybrid estimator
able to deal with both sparse and non sparse scenario, to which we will compare our approach
in Section 3.6. Therefore, we propose hereafter a rule to decide whether it is better to apply
EstHer or HiLMM. We can see from Figure 3.2 that when there are 100 causal SNPs, there is
a large range of threshold values which provide an accurate estimation of η?, but when there
are 1000 or 10000 causal SNPs, see Figure 3.9), the estimations are very different even for close
thresholds. This observation gave us the idea of quantifying the stability of the estimations
around the threshold that we determined as the optimal one. More precisely, for each threshold,
we have an estimation of heritability with a 95% confidence interval, and we count the number of
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Figure 3.7 – Results of HiLMM and EstHer when there are a few causal SNPs with moderate
effects and a lot of SNPs with small effects. The proportion of each is 100 out of 1000 (up) and
100 out of 10000 (bottom), with η? = 0.4 and 0.6.

thresholds for which the confidence intervals overlap. Figure 3.10 confirms the stability around
the best threshold for different values of η? and Table 3.3 displays the number of ovelapping
confidence intervals. We empirically determine the following criterion: if the mean number of
thresholds is greater than 10 (over 16 tested thresholds), we apply EstHer, if not, we apply
HiLMM. The results obtained by using this criterion are displayed in Figure 3.11.

3.6 Results after applying the decision criterion and comparison
to other methods

Table 3.3 – Mean value of the number of overlapping confidence intervals for 16 thresholds from
0.7 to 0.85.

η? 100 causal SNPs 1000 causal SNPs 10000 causal SNPs

0.4 12.2 6.6 6.9

0.5 14.9 6.6 6.3

0.6 16 7.8 7.2
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Figure 3.8 – Results of HiLMM and EstHer for 1000 (up) and 10000 (bottom) causal SNPs and
for η? = 0.4 and 0.6.
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Figure 3.9 – Absolute difference |η? − η̂| for thresholds from 0.6 to 0.9 and for 1000 (left) and
10000 (right) causal SNPs.

3.6.1 Statistical performances

In this section we show the results obtained after applying the criterion described in Section 3.5.
We compare these results to those obtained using HiLMM, but also with the software GEMMA
described in Zhou & Stephens (2012). GEMMA can fit both a non sparse linear mixed model
(GEMMA-LMM) and a sparse linear mixed model if the BSLMM option is chosen denoted by
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Figure 3.10 – Estimation of the heritability with 95% confidence intervals for η? from 0.4 to
0.6 (from left to right), and from 100, 1000 and 10000 causal SNPs from top to bottom. Each
graph shows the heritability estimations with 95% confidence intervals computed with HiLMM
(“without”) and for thresholds between 0.7 and 0.85.

BSLMM in the sequel. As explained in Zhou et al. (2013), BSLMM can deal with very sparse
and also with very polygenic scenarios.

We can see from the bottom part of Figure 3.11 that, in very polygenic scenarios (q = 0.1,
namely 10,000 causal SNPs), all the methods provide similar results: the four estimators are
indeed empirically unbiased, but with a very large variance.

In sparse scenarios (q = 10−3, namely 100 causal SNPs), we can see from the top part of
Figure 3.11 that EstHer provides better results than HiLMM and GEMMA-LMM which exhibit
similar statistical performances. In sparse scenarios, the variance of the BSLMM estimator is
larger than the one provided by EstHer and smaller than the one provided by GEMMA-LMM
and HiLMM. However, the performances of BSLMM could perhaps be improved by changing

63



V
ar

ia
b

le
se

le
ct

io
n

Chapter 3 - Improving heritability estimation by a variable selection approach in high dimensional
sparse linear mixed models

the MCMC parameters. Here, for computational time reasons, we used the default parameters
that is 100,000 and 1,000,000 for the number of burn-in steps and the number of sampling,
respectively.
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Figure 3.11 – Estimations of η̂ with 95 % confidence intervals obtained using EstHer, BSLMM,
HiLMM and GEMMA-LMM with 100 causal SNPs (top) and 10,000 causal SNPs (bottom).
The results are obtained with 10 replications.

3.6.2 Computational times

The computational times in seconds for one estimation of the heritability with BSLMM and
the heritability estimation for 16 thresholds as well as the associated confidence intervals with
our method EstHer are displayed in Figure 3.12. We chose this number of thresholds since we
applied the criterion defined in Section 3.5. It should be noticed that the computational times
for EstHer could be reduced by diminishing the number of thresholds. For BSLMM we used the
default parameters for the number of burn-in steps and the number of sampling. We can see
from this figure that the gap between EstHer and BSLMM is all the more important that N is
large. Contrary to our approach, BSLMM seems to be very sensitive in terms of computational
time to the value of N .

3.7 Applications to genetic data

In this section, we applied our method to the neuroanatomic data coming from the Imagen
project. In this data set, n = 2087 individuals and N = 273926 SNPs. For further details on
this data set, we refer the reader to Section 3.2.
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Figure 3.12 – Times (in seconds) to compute one heritability estimation with BSLMM (crosses)
and EstHer (dots) by using 16 thresholds for n = 2000 and different values of N from 50, 000 to
200, 000.

3.7.1 Calibration of the threshold

We start by finding the threshold which is the most adapted to the Imagen data set. We use
the same technique as the one described in Section 3.4.2: for several values of η? and several
thresholds, we display the absolute value of η? − η̂, see Figure 3.13. The only difference with
Section 3.4.2 is that we generated the observations by using the matrix W coming from the
IMAGEN data set. According to Figure 3.13, we can find a reliable range of thresholds for
estimating the heritability for all η? from 0.4 to 0.7 when the number of causal SNPs is smaller
than 100. This optimal threshold is equal to 0.79. We shall use this value in the sequel.
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Figure 3.13 – Absolute value of the difference between η? and η̂ for thresholds from 0.6 to 0.9,
and for different values of qN : (a) 50 causal SNPs, (b) 100 causal SNPs. Each difference has
been computed as the mean of 10 replications.
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Table 3.4 – Mean value of the number of overlapping confidence intervals for 16 thresholds from
0.7 to 0.85.

Phenotype Number of thresholds

Bv 7.19

Hip 7.5

Icv 7.37

Acc 9.94

Amy 9.88

Th 7.5

Ca 7.13

Pu 7.13

Pa 10.75

3.7.2 Application of the decision criterion

Since we determined in the previous section that the optimal threshold is 0.79, we apply Es-
tHer for thresholds around this value, that is from 0.7 to 0.85. We then count the number
of overlapping confidence intervals, as explained in Section 3.5. The results are displayed in
Table 3.4. We observe from this table that the sensitivity to the choice of the threshold varies
substantially from one phenotype to another. Hence, we choose to apply our EstHer approach
to the most stable phenotypes with respect to our criterion, namely pa, amy and acc. For the
other phenotypes we recommand to apply HiLMM or another similar approach such as GCTA
or GEMMA-LMM.

3.7.3 Results

Figure 3.14 (a) shows the heritability estimation with 95 % confidence intervals for all pheno-
types, using either EstHer or HiLMM according to the outcome of our decision criterion. Figure
3.14 (b) shows the results obtained by using HiLMM, namely without any variable selection
step. We compare our results with the ones obtained by Toro et al. (2015) who estimated the
heritability of the same phenotypes by using the software GCTA. On the one hand, we can see
from Figure 3.14 that in the cases where EstHer is used the confidence intervals given by our
methodology are substantially smaller and included in those provided by either HiLMM or Toro
et al. (2015). On the other hand, when HiLMM is used our results are on a par with those
obtained by Toro et al. (2015). Moreover, our approach provides a list of SNPs which may
contribute to the variations of a given phenotype and which could be further analyzed from a
biological point of view in order to identify new biological pathways.

3.8 Conclusion

We propose in this paper a practical method to estimate the heritability in sparse linear mixed
models using variable selection tools, as well as confidence interval obtained thanks to a non
parametric bootstrap approach. Our approach is implemented in the R package EstHer which
is available from the Comprehensive R Archive Network (CRAN) and from the web page of the
first author. In the course of this study, we showed that our approach has two main features
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Figure 3.14 – (a) Heritability estimations of bv, icv, th, pu, pa, hip, amy, acc, and ca with 95%
confidence intervals obtained using EstHer or HiLMM according to the outcome of our decision
criterion. (b) Heritability estimations of bv, icv, th, pu, pa, hip, amy, acc and ca with 95%
confidence intervals obtained using HiLMM.

which makes it very attractive. Firstly, it is very efficient from a statistical point of view since
it provides confidence intervals considerably smaller than those obtained with methods without
variable selection. Secondly, its very low computational burden makes its use feasible on very
large data sets coming from quantitative genetics.

Moreover, we observed that the statistical performance of the EstHer approach are all the
more impressive that the level of sparsity is high that is when q is small. For this reason, we also
proposed an empirical criterion which allows the user to decide whether it is better to apply an
approach that takes into account the sparsity and starts with a variable selection stage, namely
EstHer, or an approach which ignores the potential sparsity in the observations, namely HiLMM.
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Chapter 4

Application: heritability estimation
of the size of juvenile trouts

The work presented in this chapter comes from a collaboration with Niklas Tysklind, who is a
researcher in the UMR EcoFoG, INRA in Kourou. This work will be soon submitted to an
international journal of ecology.
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4.1 Data and motivation

We have a dataset containing the size of 142 juvenile trouts, the genotype of which is described by
3917 SNPs. We also have several possible explaining variables: the river they lived in, the month
the trouts have been captured, and several features regarding the environmental conditions:
latitude, longitude, alkalinity, hardness, catchment area (it gives an idea of the potential amount
of environment available for the sea trout), shreve, strahler (both are complexity values of the
river in terms of how many affluents and branches each river has). Finally we have an additional
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information called the “mean +0 and > 0+” juvenile densities, which are included as a proxy
for the effect of competition between the juvenile trouts.

Our goal to estimate the heritability of the trouts size, that is the proportion of variability
of the size which can be explained by genetic factors.

4.2 Model and method

4.2.1 Model

We propose to use the following sparse linear mixed model:

Y = Xβ + Zu + e

where

• Y is a vector of length 142 which contains the observations of the size of the trouts.

• X is a matrix associated to the fixed effects: it contains the explaining variables (river,
month...).

• β corresponds to the coefficients associated to X.

• Z is a n×N matrix where Zi,j is the value of the SNP j of the individual i.

• u and e are the random effects. We assume that

e ∼ N
(

0, σ?e
2IdRn

)
,

and since we do not know the SNPs which may have an effect on the observations, we shall
assume that

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2) , for all i = 1..n

where u = (u1, . . . , un).

4.2.2 Method

The method that we used is described in Chapter 3. However, the first step of the procedure,
called the Sure Independance Screening (SIS), is specific to ultra high dimensional datasets.
According to numerical results obtained with and without the SIS step, which are not presented
here, we propose to skip the first step of our method.

The results of this approach are shown in the following simulation study.

4.3 Simulation Study

We propose a simulation study in the following framework: n = 200, N = 4000, which are close
to the size of the trouts dataset that we want to analyze. We assume that the number of causal
SNPs varies from 4 (q = 10−3) to 400 (q = 0.1).
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4.3.1 Results obtained without selection

The estimations obtained using our method HiLMM, described in Chapter 2, are shown in Figure
4.1. The large empirical variance of this estimator motivates an additional variable selection
step before estimating heritability.
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q
Figure 4.1 – Heritability estimations obtained from 100 replications without selection for η? = 0.6
and different values of q from 0.001 to 0.1.

4.3.2 Calibration of the threshold in the stability selection

As explained in the detailed procedure in Chapter 3, our method requires to determine the
optimal threshold in the stability selection. For this purpose, we apply the procedure described
in Section 4.2.2. Figure 4.2 displays the mean of the absolute value of the difference between η?

and the estimated value η̂ for different thresholds and for different values of η? obtained from
10 replications.

When the number of causal SNPs is small (namely, smaller than 20), applying our selection
method with a threshold around 0.35 seems to provide accurate estimations for different values of
the heritability η?. Otherwise, there is no common threshold that provides accurate estimations
for all values of the heritability η?. In this scenario, we shall estimate directly heritability
without performing a variable selection approach.

4.3.3 Results regarding heritability estimation

We observe firstly from Figure 4.3 that when the number of causal SNPs is small (namely,
smaller than 20), applying our selection method substantially improves the heritability estima-
tions compared to the method without selection. Secondly, when the number of causal SNPs is
high, both methods have similar performances.
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Figure 4.2 – Absolute difference |η?− η̂| for thresholds from 0.2 to 0.8 and for different numbers
of causal SNPs, for different values of η?: 0.4 (green), 0.5 (dark blue), 0.6 (blue) and 0.7 (purple).

4.3.4 Support recovery when the selection is applied

When the number of causal SNPs is small, our criterion leads us to apply the variable selection
approach. We focus on the support that we captured with our method: Figure 4.4 shows the
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Figure 4.3 – Estimated values of η̂ obtained with our variable selection method EstHer with a
threshold of 0.35 and without selection (HiLMM) for different numbers of causal SNPs.

proportion of the recovered support and the number of variables selected by our method. We
notice that choosing a threshold around 0.35 seems to be a relevant trade-off between a large
true positive rate and a small false positive rate of non zero recovered components. We recover
indeed at least 30% of the support and up to 60% when the number of causal SNPs is very small
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(namely, 4 or 8 SNPs).
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Figure 4.4 – Proportion of the support recovered by our selection method Esther (top) and
number of selected variables (bottom) for different numbers of causal SNPs and for different
thresholds.

4.4 Results on the juvenile size dataset

4.4.1 Results obtained without taking fixed effects into account

First we propose to estimate the heritability without taking any fixed effect into account. Figure
4.5 shows firstly that the heritability of the trouts size is very high (80%) despite the large
confidence interval (40-100%). Moreover, we can see that EstHer and HiLMM provide the same
estimation, which suggests that the number of causal SNPs must be high.

4.4.2 Including fixed effects

We estimated the heritability when considering as a fixed effect the river where the trouts were
captured in. The results are shown in Figure 4.6: including the river as a fixed effect provides
a higher heritability estimation (0.93 instead of 0.79) and more accurate (the length of the
confidence interval is substantially smaller). It means that the river and the SNPs explain a
very large proportion of the size variations. Including the month as a fixed effect does not seem
to have a relevant effect: a possible explanation is that the month effect was already taken into
account in the river effect, since all trouts of the same river have been captured the same month.

Then, we considered phylogeographic groups instead of considering the specific river: the
30 rivers are contained in 9 phylogeographic groups with similar environmental features. The
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Figure 4.5 – Estimated value of the heritability with 95 % confidence intervals, using EstHer
and HiLMM.

results using these phylogeographic groups as a fixed effect are displayed in Figure 4.6. It seems
that these groups bring less information than the rivers, but if we join the groups with the month
effect, we have similar results than those obtained with either the river or the combination river
and month. This could mean that the information we lost when considering the groups instead
of the rivers was contained in the month effect.
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Figure 4.6 – Estimated value of the heritability using different fixed effects, from left to right:
river, river/month, reporting groups, reporting groups and month.

Then, we wonder if we can determine the specific features of the river that can explain the
increasing proportion of variability explained when knowing the river. Figure 4.7 shows the
results of considering different groups of fixed effects. The groups are the following:

- Group 1: longitude, latitude, catchment area, shreve, strahler
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- Group 2: longitude, latitude, catchment area, shreve, strahler, alkalinity, hardness
- Group 3 : longitude, latitude, catchment area, shreve, strahler, mean 0+ and mean > 0+
These groups were chosen according to the availability of the data: indeed, in the first group

we have all the information for the 142 trouts. Alkalinity and hardness were missing for 12
individuals, and mean 0+ and mean > 0+ for 16 individuals (unfortunately, not the same than
alkalinity and hardness).

The results are displayed in Figure 4.7. We see that Group 1 explains a proportion of
variability bigger than no fixed effects but smaller than the river. Same result when we add mean
0+ and mean > 0+. The confidence interval increases when considering the additional effect of
alkalinity and hardness. However, this could possibly be the effect of removing individuals from
the study. This assumption is consistent with Figure 4.8, which shows the results obtained with
the variables of Group 1 but without the individuals that we had to remove when we studied
Group 2, compared to the results obtained with Group 2. Similarly, Figure 4.9 shows the results
obtained with the variables of Group 1 but without the individuals that we had to remove when
we studied Group 3, compared to the results obtained with Group 3. We see a substantial
difference in the estimations, which suggests that mean 0+ and mean > 0+ could be relevant
variables.
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river/month no cov gp1/month gp2/month gp3/month

●
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Figure 4.7 – Estimated value of the heritability with different covariates from left to right:
river/month, no covariates, group 1/month, group 2/month, group 3/month

4.5 Conclusion

• The length variations have an important genetic component (≥40%).

• This genetic component might be due to large number of causal SNPs (at least, more than
20 according to the simulation study), which makes impossible the recovery of these causal
SNPs.

• Including fixed effects can refine the heritability estimations: the river seems indeed to be
a key factor in the length variation. Once the river has been taken into account, more
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

with alkalinity/hardness without alkalinity/hardness

●

●

Figure 4.8 – Estimated value of the heritability with and without alkaninity and hardness as
covariates, but removing 12 individuals from the study.
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Figure 4.9 – Estimated value of the heritability with and without mean 0+ and mean > 0+ as
fixed effects, but removing 16 individuals from the study.

than 75% of the remaining variation is due to genetic effects. However, it is important to
notice that we cannot separate entirely the effects of the month and the river.

• The reporting groups alone do not improve the heritability estimations, but associated to
the month effect, they explained as much variability as either the river, or the combined
effect river/month.

• In the environmental factors, the combined effect of catching area, longitude, latitude,
shreve, strahler explain more than no fixed effects, but less than the river.
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Chapter 5

Heritability estimation in
case-control studies

The work contained in this chapter will be soon submitted to a journal of statistics.
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Abstract

In the genetic field, the concept of heritability refers to the proportion of variations of a bi-
ological trait or disease that can be explained by genetic factors. Quantifying the heritability of
a disease is a fundamental challenge in human genetics. Although the litterature regarding heri-
tability estimation for binary traits is less rich than for quantitative traits, several methods have
been proposed to estimate the heritability of diseases. However, to the best of our knowledge,
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Chapter 5 -Heritability estimation in case-control studies

the existing methods raise at least one of the two concerns (generally both): either they have
not been validated theoretically or they are severely affected by the oversampling of the number
of patients compared to controls in a medical study. We propose in this paper to investigate the
theoretical properties of the method developed by Golan et al. (2014), which is very efficient in
practice, despite the oversampling of patients. Our main result is the proof of the consistency
of this estimator. We also provide a numerical study to compare two approximations leading to
two heritability estimators.

5.1 Introduction

In the genetic field, the concept of heritability refers to the proportion of variations of a biological
trait or disease that can be explained by genetic factors. Quantifying the heritability is a major
information for diseases that are suspected to have a strong genetic component but which causes
are often vague and multiple. Indeed, determining a high value of heritability for a disease is a
powerful argument in favor of further research for genetic causes, but it also opens the possibility
of predicting a risk of illness based on the genetic background.
There exist several methods to estimate the heritability of quantitative traits, which we will
describe hereafter, with interesting theoretical and practical properties. Regarding binary traits,
such as the presence or absence of a disease, a few methodologies have been proposed, but as far
as we know, most of them have not been validated theoretically. Golan et al. (2014) developed
a method to estimate heritability of binary traits that they compared to recent methodologies
and which was shown to be very efficient in practice. The aim of this paper is to investigate the
theoretical properties of Golan et al. (2014)’s method.
Let us first recall the main existing methods to estimate heritability of quantitative traits, which
will be strongly linked to the methods used for binary traits. Linear Mixed Models (LMMs)
have been widely used for estimating the heritability of quantitative traits. Indeed, Yang et al.
(2010) proposed for instance to estimate the heritability of human height by using a classical
LMM defined by

Y = Xβ + Zu + e, (5.1)

where Y = (Y1, . . . ,Yn)′ is the vector of observations of a phenotype of interest, X is a n × p
matrix of predictors (or fixed effects), β is a p× 1 vector containing the unknown linear effects
of the predictors, and u and e correspond respectively to the genetic and the environmental
random effects. We assume that u and e are Gaussian random effects with variances σ?2u and
σ?2e respectively. Moreover, Z is a n×N matrix which contains the genetic information. They
proposed to estimate the parameter

η? =
Nσ?2u

Nσ?2u + σ?2e
, (5.2)

commonly considered as the mathematical definition for heritability since it determines how the
variance is shared between u and e.

Several methods were developed to estimate the parameter η?, see Patterson & Thompson
(1971), Searle et al. (1992), Yang et al. (2011), Pirinen et al. (2013), Zhou & Stephens (2012).
From a theoretical point of view, Bonnet et al. (2015) showed the asymptotic normality of the
maximum likelihood estimator of η? as well as a central limit theorem leading to confidence
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Chapter 5 -Heritability estimation in case-control studies

intervals for η?.

All these methods obviously cannot be applied directly for binary traits, but there exist exten-
sions by assuming an underlying Gaussian variable linked to the binary phenotype. There are
two different modelings which connect binary phenotypes to a continuous quantity called the
liability.
The first one consists in assuming that the observations Y1, . . . ,Yn are distributed according
to the following Generalized Linear Mixed Model (GLMM):

Yi ∼ B(pi) (5.3)

with pi = g(li) where g is a link function and li is defined as

l = Zu + e (5.4)

with l = (l1, . . . , ln), u ∼ N (0, σ?2u ) and e ∼ N (0, σ?2e ), like in classical LMM defined in Equation
(5.1). The heritability is then defined “at the liability scale”, which means for the continuous
variable l, and is given by the same expression (5.2) as for quantitative traits.
Several methods were established to estimate heritability in Model (5.3): among them we can
quote the MCMC method of Hadfield (2010) and the penalized quasi-likelihood approach of
Breslow & Clayton (1993). The numerical performance of these methods can be found in the
comparative study of de Villemereuil et al. (2013).

Another modeling and definition for the heritability of a binary trait, which is more frequently
used than the previous one, was proposed by Falconer (1965), who assumed that the binary
observations could be seen as an indicator function of a Gaussian variable exceeding a given
threshold t:

Yi = 1{li>t}, (5.5)

with li defined by the same expression (5.4) than in Model (5.3). Observe that the threshold t
is directly linked to the prevalence of the disease in the population, that is the proportion K of
the population which is affected by the disease. Indeed,

K = P(Yi = 1) = P(li > t). (5.6)

The unobserved Gaussian variable l = (l1, . . . , ln) is also called the liability in this modeling,
which is usually called the “liability model” (Falconer (1965), Lee et al. (2011), Tenesa & Haley
(2013)) and has been shown to be a reasonable modeling for complex diseases, for instance by
Purcell et al. (2009). The heritability is then also defined as the heritability at the liability scale
as in Equation (5.2).

Regarding the procedures based on the second modeling defined in Equations (5.5) and (5.4),
Lee et al. (2011) proposed to use a maximum likelihood approach as if the binary traits were
Gaussian, and then to apply a multiplicative factor to correct this approximation. Golan et al.
(2014) showed that this heritability estimator was strongly biased in several realistic scenarios,
in particular it was very sensitive to the prevalence of the disease, which is the proportion of the
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Chapter 5 -Heritability estimation in case-control studies

population that is affected by the disease (when the disease is rarer, the bias increases). The
estimator also underestimates the heritability when the true heritability is high.
Weissbrod et al. (2015) introduced a maximum likelihood based strategy to rebuild the under-
lying liability before estimating the heritability.
However, all these methods do not take into account an essential element of case-control studies:
indeed, in a medical study, the number of patients is similar to the number of controls even
though the studied disease might be rare, which means that the proportion of cases in the study
does not reflect the proportion of cases in the population. This oversampling of the cases has
been noticed and handled by the approach of Golan et al. (2014), who proposed a moment based
method to estimate the heritability. They computed an approximate quantity of the expectation
of WiWj , for two individuals i and j, Wi being a centered and normalized version of the binary
data Yi, and conditionally to the fact that individuals i and j are in the study.

Since the method of Golan et al. (2014) presented very good numerical results but was not
supported by theoretical grounds, we propose in this paper a method which is strongly inspired
from the one proposed by Golan et al. (2014): we obtained two approximations (depending
on the order of the approximation) of the expectation E of WiWj conditionally to the fact
that both individuals are in the study. We show that the first order approximation provides an
estimator with good theoretical properties: indeed, we prove that it is a consistent estimator of
η?. We also propose a simulation study to compare the numerical performances of the estimators
obtained with both approximations.
The model we study and the main definitions are given in Section 5.2. Section 5.3 contains
the first order approximation of the expectation E with the corresponding estimator of η? and
Section 5.4 presents our consistency result for this estimator. The second order approximation
of E is given in Section 5.5 and the numerical comparison of the two estimators can be found in
Section 5.6. In Section 5.7, we discuss the results and potential perspectives. Finally, the proofs
are given in Section 5.8.

5.2 Model and definitions

5.2.1 Liability model

Let us denote K the prevalence of a disease in a population, that is the proportion of the
population affected by the disease. Let Yi be the random variable such that Yi = 1 if the
individual i is ill (then, individual i is called a case) and Yi = 0 if the individual i is healthy
(then individual i is called a control). We assume that the Yi’s are linked to unobserved variables
li as follows

Yi = 1{li>t}, (5.7)

where t is a given threshold, related to the prevalence K by (5.6), and the li’s are defined as

l = Zu + e, (5.8)

where l = (l1, . . . , ln), u and e are random effects such that u ∼ N (0, σ?2u IdRN ) and
e ∼ N (0, σ?2e IdRn). The vector u corresponds to the genetic effects and e to the environmental
effects. Moreover, Z is a n × N random matrix which contains the genetic information, and
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which is such that the Zi,k are normalized random variables in the following sense: they are
defined from a matrix A = (Ai,k)1≤i≤n, 1≤k≤N by

Zi,k =
Ai,k −Ak

sk
, i = 1, . . . , n, k = 1, . . . , N , (5.9)

where

Ak =
1

n

n∑
i=1

Ai,k, s
2
k =

1

n

n∑
i=1

(Ai,k −Ak)2, k = 1, . . . , N . (5.10)

In (5.9) and (5.10) the Ai,k’s are such that for each k in {1, . . . , N} the (Ai,k)1≤i≤n are in-
dependent and identically distributed random variables and such that the columns of A are
independent.
In practice, the matrix A contains the genetic information about all the individuals in the study.
More precisely, for each k, Ai,k = 0 (resp. 1, resp. 2) if the genotype of the ith individual at
locus k is qq (resp. Qq, resp. QQ). In this paper, we consider a more general case with mild
assumptions on the distribution of the random variables Ai,k, which are described in Section
5.4.
With the definition (5.9), the columns of Z are empirically centered and normalized, and one
can observe that

Var(l|Z) = Nσ?u
2R + σ?e

2IdRn , where R =
ZZ′

N
.

The heritability at the liability scale, which is the parameter we want to estimate, is defined as
the ratio of variances:

η? =
Nσ?2u

Nσ?2u + σ?2e
. (5.11)

The variance of l conditionally to Z can then be rewritten with respect to η? and σ?2 = Nσ?2u +σ?2e
as:

Var(l|Z) = η?σ?2R + (1− η?)σ?2IdRn .

We will assume in the sequel without loss of generality that σ?2 = 1. Indeed, if σ?2 6= 1, we can
consider the variable l′i = li

σ? and then, instead of estimating t from the prevalence K with the
relationship (5.6), we estimate directly t/σ?.

5.2.2 Case control study

Since the prevalence P in the study can be very different from the prevalence K in the general
population (the cases are substantially oversampled in a case-control study), it is essential to
consider that the observations that we have access to depend on the probabilities for both
cases and controls to be selected in the study. Indeed, if pcontrol denotes the probability for a
control to be selected in the study, we can define the corresponding variable Ui ∼ B(0, pcontrol)
which is equal to 1 if individual i is a control who is selected in the study. Similarly we define
the probability pcase for a case to be selected for the sudy and the corresponding variable
Vi ∼ B(0, pcase). Then for any individual i, we define the variable εi by

εi = ViYi + Ui(1−Yi),

83



C
as

e-
co

n
tr

ol
st

u
d

ie
s

Chapter 5 -Heritability estimation in case-control studies

which is equal to 1 if individual i belongs to the study and 0 if not. We assume that the variables
U1, . . . , Un, V1, . . . , Vn are independent and independent of Y1, . . . ,Yn and Z.
Since we do not observe Yi for the whole population but only for the individuals who belong to
the study, we will work with the variables Wi defined by

Wi =
Yi − P√
P (1− P )

εi,

which are centered versions of Yi in the study and are non-zero only if individual i belongs to
the study.
The probabilities pcase and pcontrol are chosen such that the prevalence in the study is equal to
P . Indeed, if we assume that

pcase = 1, (5.12)

it implies that

pcontrol =
K(1− P )

P (1−K)
. (5.13)

The proof of (5.13) is given in Appendix 5.A. Equation (5.12) means that all cases are accepted
in the study and it is usually called a “full ascertainment” assumption (see for instance Golan
et al. (2014)).

5.3 Heritability estimator

5.3.1 Method of Golan et al. (2014)

Golan et al. (2014) considered a simplified version of Model (5.4), where the liability is given by

l = g + e,

where g is a genetic random effect, which can be correlated across individuals, and e is the
environmental random effect, which is assumed to be independent of the genetic effect. Both
effects are assumed to be Gaussian: e has a variance equal to (1−η?)IdRn and g has a covariance
matrix, the diagonal entries of which are equal to η? and the non diagonal term (i, j) is equal
to η?Gi,j . The covariance matrix of (li, lj) is given by

Σ =

(
1 η?Gi,j

η?Gi,j 1

)
.

The heritability estimator proposed by Golan et al. (2014) is a least square estimator obtained
by minimizing ∑

i 6=j
(WiWj − E[WiWj |εi = εj = 1])2 . (5.14)

Since the expression of E[WiWj |εi = εj = 1] has no explicit formula as we shall see hereafter,
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Golan et al. (2014) proposed to take advantage of the fact that the correlations Gi,j are small
for i 6= j.
The ground of the method is to write

E[WiWj |εi = εj = 1] =

1−P
P P(Yi = Yj = 1)− K(1−P )

P (1−K)P(Yi 6= Yj) + K2(1−P )
P (1−K)2

P(Yi = Yj = 0)

P(Yi = Yj = 1) +
(
K(1−P )
P (1−K)

)2
P(Yi = Yj = 0) + K(1−P )

P (1−K)P(Yi 6= Yj)

(5.15)

and to propose approximations of P(Yi 6= Yj), P(Yi = Yj = 0) and P(Yi 6= Yj) thanks to
Taylor developments around the quantity Gi,j . The computations leading to (5.15) can be found
in Appendix 5.B.
This approximation, plugged in the least square criterion (5.14), led to the heritability estimator
given by

η̂ =


∑
i 6=j

WiWjGi,j

c
∑
i 6=j

G2
i,j

∧ 1

 ∨ 0, (5.16)

where

c = φ(t)2 P (1− P )

K2(1−K)2
, (5.17)

φ being the density of the standard Gaussian distribution.

5.3.2 Our method

In Model (5.7) that we consider, the variance matrix Σ(N) of (li, lj) conditionally to Z can be
written as

Σ(N) =

(
1 + η?(GN (i, i)− 1) η?GN (i, j)

η?GN (i, j) 1 + η?(GN (j, j)− 1)

)
,

where for all 1 ≤ i, j ≤ n,

GN (i, j) =
1

N

N∑
k=1

Zi,kZj,k. (5.18)

Note that in the model we consider, GN (i, j) is a random variable, which is not the case of the
quantity Gi,j in the model studied by Golan et al. (2014). A key element is to notice that Σ(N)

is close to the n× n identity matrix, more precisely

Σ(N) =

(
1 + η? AN (i)√

N
η? BN (i,j)√

N

η? BN (i,j)√
N

1 + η? AN (j)√
N

)
(5.19)
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where AN (i) = Op(1), AN (j) = Op(1) and BN (i, j) = Op(1). The proof of (5.19) can be found
in Appendix 5.C.
Then, following the idea of Golan et al. (2014), we propose to approximate

E[WiWj |Z, εi = εj = 1]

defined in Equation (5.15) thanks to Taylor developments around AN (i)√
N

, AN (j)√
N

and BN (i,j)√
N

.

The detailed computations are devised in Section 5.8.1.
A first order approximation of E[WiWj |Z, εi = εj = 1], plugged in (5.14), leads to the same
estimator η̂(1) as the one proposed by Golan et al. (2014). Indeed, we obtain

η̂(1) =


∑
i 6=j

WiWjGN (i, j)

c
∑
i 6=j

GN (i, j)2
∧ 1

 ∨ 0, (5.20)

where c = φ(t)2 P (1−P )
K2(1−K)2

.

In Section 5.5, we consider the second order approximation, which is different from the one
devised by Golan et al. (2014).

5.4 Consistency of the heritability estimator η̂(1)

In this section, we consider the heritability estimator η̂(1) defined in Equation (5.20).

Assumption 2. There exist d > 0, C > 0 and a neighborhood V0 of 0 such that for all λ in V0

1.1 E[exp
(
λ(Ai,k − E[Ai,k])

2 − σ2
k

)
] ≤ C exp(dλ2)

1.2 E[exp (λ(Ai,k − E[Ai,k]))] ≤ C exp(dλ2)

1.3 E[exp (λ(Ai,k − E[Ai,k])(Aj,k − E[Ai,k]))] ≤ C exp(dλ2)

for all i 6= j and for all k, where the Ai,k’s are defined in (5.9) and σ2
k is the variance of Ai,k.

Assumption 3.

2.1 inf
k=1..N

σ2
k = δmin > 0

2.2 sup
k=1..N

σ2
k = δmax < +∞

Theorem 4. Let Y = (Y1, . . . ,Yn) satisfy Model (5.5) with A satisfying Assumptions 2 and
3, and η̂(1) the estimator of η? defined in Equation (5.20). Then, as n,N → ∞ such that
n/N → a ∈ (0,+∞),

η̂(1) = η? + op(1).
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The proof of Theorem 4 relies on the following lemmas.

Lemma 7. When n and N go to infinity and n/N goes to a,

1

n

∑
i 6=j

GN (i, j)2converges in probability to a.

We will then have to focus on

1

n

∑
i 6=j

WiWjGN (i, j) =

 1

n

∑
i 6=j

(WiWj − E[WiWj |Z, εi = εj = 1])GN (i, j)

+
1

n

∑
i 6=j

E[WiWj |Z, εi = εj = 1]GN (i, j)

 . (5.21)

Let EN be the following event

EN =

{
sup
i
|GN (i, i)− 1| ≤ εN and sup

i 6=j
|GN (i, j)| ≤ εN

}
,

where εN = 1

N
1
2−γ

with γ a positive number such that γ < 1/10.

Let us denote EcN the complement of the event EN . We consider the following decomposition

η̂(1) = η̂(1)
1EN + η̂(1)

1EcN
.

Lemma 8. For all values of q, the probability of EcN satisfies P(EcN ) = O( 1
Nq ) when N → +∞.

Using the result of Lemma 8, η̂(1)
1EcN

converges in probability to 0 since

E[|η̂(1)
1EcN
|] ≤ P(EcN ) = O

(
1

N q

)
.

Lemma 9. When n and N go to infinity and n/N goes to a ∈ (0,+∞),

1

n

∑
i 6=j

E[WiWj |Z, εi = εj = 1]GN (i, j)1EN

converges in probability to acη?, where c is defined in Equation (5.17).

Lemma 10. When n and N go to infinity and n/N goes to a ∈ (0,+∞),

1

n

∑
i 6=j

(WiWj − E[WiWj |Z, εi = εj = 1])GN (i, j)1EN

converges in probability to 0.

The results of Lemmas 9 and 10 achieve the proof of Theorem 4.
The proof of Lemmas 7, 8, 9 and 10 are given in Section 5.8.2.

87



C
as

e-
co

n
tr

ol
st

u
d

ie
s

Chapter 5 -Heritability estimation in case-control studies

5.5 Second order approximation of E[WiWj|Z, εi = εj = 1]

The purpose of this section is to study the behaviour of the heritability estimator obtained
thanks to a second order approximation of E[WiWj |Z, εi = εj = 1].
Instead of computing the approximation till order 1/

√
N , we compute the approximation till

order 1/N and we obtain:

E[WiWj |Z, εi = εj = 1] =
η?√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j) +

t2

4

η?2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

+
η?2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]
+
η?2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

[
t2 − 1− P −K

K(1−K)
tφ(t)

]
+Op

(
1

N
3
2

)

The proof of this computation is detailed in Section 5.8.3.
Since the minimizer in η of the quantity

g(η) =
∑
i 6=j

(
WiWj −

η√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)− t2

4

η2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

− η2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]
− η2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

[
t2 − 1− P −K

K(1−K)
tφ(t)

])2

has no explicit form, we use a Newton-Raphson approach to obtain the corresponding heritability
estimator η̂(2) of the second order approximation.
Note that the second order approximation, which depends on BN (i, j) but also on AN (i) and
AN (j), is different from the one found by Golan et al. (2014).

5.6 Numerical study

In this section, we propose to study the numerical performance of the estimators η̂(1) and η̂(2)

devised respectively in Sections 5.3 and 5.5. Since Golan et al. (2014) already compared the
estimator η̂(1) to the one proposed by Lee et al. (2011) and stated several arguments in favor
of their estimator, we will focus on comparing our two estimators in terms of statistical and
computational efficiency.

5.6.1 Simulation process

In this simulation study, we generated data sets with n ' 200, N = 10000 in order to respect
the classical scenario where N >> n. The value of the prevalence in the population varies from
0.005 to 0.1. The observations were generated as follows.
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• We set the parameters η?, K, P = 1/2 and the size of the general population, chosen very
large. Notice that the number of individuals selected in the study varies from one sample
to another. We chosed in practice a population size in order to have around 100 patients
in the study.

• We generated the Gaussian random effects e and u with respective variances

σ?2u = η?/N and σ?2e = 1− η?.

• We generated liabilities, from which we generated binary observations in order to have a
certain prevalence K in the population, that is certain number of cases.

• For each individual, we determined those who stayed in the study: the cases are automati-
cally selected (full ascertainment assumption) but each control is selected with probability
pcontrol computed in Equation (5.13).

5.6.2 Results

Figure 5.1 displays the estimations of η? obtained with both estimators η̂(1) and η̂(2). First,
we can notice that both estimators seem empirically unbiased. Second, we observe no obvious
improvement of the performance of η̂(2) compared to η̂(1) in terms of empirical variance. Finally,
we can also note that the estimations seem more accurate when the prevalence K is high, namely
K = 0.1.
Table 5.1 and Figure 5.2 show the computational performance of both estimators. The compu-
tation of the estimator η̂(2) obtained with the more refined approximation is obviously slower,
but for small values of n (namely, n = 100), the time required to compute an estimation of η?

remains quite small (86 seconds, against 40 seconds for the other estimator). However, when n
is larger, the computational time increase substantially and the “slower” estimator needs up to
13500 seconds, that is almost 4 hours, to compute an estimation of η?.
In conclusion, both estimators are empirically unbiased and since the computation of the esti-
mator η̂(2) is slower and does not improve the estimations of η?, we are satisfied with the first
order approximation and the corresponding estimator η̂(1).

Table 5.1 – Times in seconds to compute an estimation of η? obtained with η̂(1) and η̂(2) for
different values of n (100 and 1000) and N (from 1000 to 105).

n N 1000 10000 50000 105

100 η̂(1) 0.478 2.390 28.595 40.528

η̂(2) 3.148 7.127 56.761 86.156

1000 η̂(1) 69.047 327.240 2887.518 7845.281

η̂(2) 376.363 936.845 6624.186 13500.510

5.7 Discussion

In this paper, we proposed theoretical grounds to support the heritability estimator in case-
control studies developed by Golan et al. (2014). We proved indeed its consistency in the
framework where both the number of individuals n and the number N of SNPs go to infinity,

89



C
as

e-
co

n
tr

ol
st

u
d

ie
s

Chapter 5 -Heritability estimation in case-control studies

η? = 0.5 η? = 0.7

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●●●●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●
●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

first approx second approx

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.1 – Estimations obtained with η̂(1) (”first approx”) and η̂(2) (”second approx”) for
different values of η?: 0.5 (left), 0.7 (right) and different values of the prevalence K: 0.005 (top),
0.01 (middle), 0.1 (bottom). The sample size is n ' 200 and N = 10000. Each boxplot is
generated from 200 replications.

when the ratio n/N goes to a constant a.
It would be interesting to complete this work with theoretical results which could allow the user
to compute accurate confidence intervals, similarly to existing results for quantitive traits. As
it is often the case in genetic applications, the question of removing strong assumptions such as
the Gaussianity of the random effects or the independence of the columns of the SNP matrix
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Figure 5.2 – Time in seconds to compute an estimation of η? obtained with η̂(1) (dots) and η̂(2)

(triangles) for n = 100 (left) and n = 1000 (right) and for different values of N (from 1000 to
105).

remains a challenging issue. Considering possible sparsity in the random effects would also be
an interesting improvement and will be the subject of a future work.

5.8 Proofs

5.8.1 Taylor development of E[WiWj|Z, εi = εj = 1] in Model (5.7)

According to Equation (5.15), we only need to compute approximations of P(Yi = Yj = 1|Z),
P(Yi = Yj = 0|Z) and P(Yi 6= Yj |Z) to obtain an approximation of E(WiWj |Z, εi = εj = 1).

P(Yi = Yj = 1|Z) =

∫ ∞
t

∫ ∞
t

f(x, y)dxdy,

P(Yi = Yj = 0|Z) =

∫ t

−∞

∫ t

−∞
f(x, y)dxdy

and

P(Yi 6= Yj |Z) = 2

∫ t

−∞

∫ ∞
t

f(x, y)dxdy,

with

f(x, y) =
1

2π
|Σ(N)|−

1
2 exp

{
−(x, y)Σ(N)−1(x, y)t

2

}
.

where the matrix Σ(N) is the covariance matrix of (li, lj).
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We will use the result of Equation (5.19), which will be demonstrated in Appendix 5.C, that is

Σ(N) =

(
1 + η? AN (i)√

N
η? BN (i,j)√

N

η? BN (i,j)√
N

1 + η? AN (j)√
N

)
, (5.22)

where AN (i) = Op(1), AN (j) = Op(1) and BN (i, j) = Op(1).
We have

f(x, y) =
1

2π|Σ(N)|−
1
2

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η?√
N
AN (j)) + y2(1 +

η?√
N
AN (i))− 2xy

η?√
N
BN (i, j)

]}
=

1

2π|Σ(N)|−
1
2

exp(−x
2

2
) exp(−y

2

2
) exp

{
−x

2

2

(
1

|Σ(N)|

[
1 +

η?√
N
AN (j)

]
− 1

)
−y

2

2

(
1

|Σ(N)|

[
1 +

η?√
N
AN (i)

]
− 1

)
+

1

|Σ(N)|
xy

η?√
N
BN (i, j)

}
.

Using a first order Taylor development,

|Σ(N)|−1 = 1− (AN (i) +AN (j))
η?√
N

+ αN

and

|Σ(N)|−
1
2 = 1− 1

2
(AN (i) +AN (j))

η?√
N

+ βN ,

where αN = Op(
1
N ) and βN = Op(

1
N ).

More precisely,

αN = −(AN (i)AN (j)−BN (i, j)2)
η?2

N

+
1

2

(
−(AN (i) +AN (j))

η?√
N
− (AN (i)AN (j)−BN (i, j)2)

η?2

N

)2
1

(1 + α̃)3
,

with |α̃| ≤ |(AN (i) +AN (j)) η?√
N

+ (AN (i)AN (j)−BN (i, j)2)η
?2

N |.
Similarly,

βN = −1

2
(AN (i)AN (j)−BN (i, j)2)

η?2

N

+
1

2

(
−1

2
(AN (i) +AN (j))

η?√
N
− 1

2
(AN (i)AN (j)−BN (i, j)2)

η?2

N

)2
3

4

1

(1 + β̃)
5
2

,

with |β̃| ≤ |12(AN (i) +AN (j)) η?√
N

+ 1
2(AN (i)AN (j)−BN (i, j)2)η

?2

N |.
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Then,

f(x, y) =

(
1− 1

2
(AN (i) +AN (j))

η?√
N

+ βN

)
φ(x)φ(y)

× exp

{
−x

2

2
(−AN (i)

η?√
N

+ γN )− y2

2
(−AN (j)

η?√
N

+ γ̃N ) + xy

(
η?√
N
BN (i, j) + ˜̃γN

)}

where γN = −AN (j)(AN (i) +AN (j))η
?2

N + αN (1 +AN (j) η?√
N

) = Op
(

1
N

)
,

γ̃N = −AN (i)(AN (i) +AN (j))η
?2

N + αN (1 +AN (i) η?√
N

) = Op
(

1
N

)
and

˜̃γN = η?√
N
BN (i, j)

(
−(AN (i) +AN (j)) η?√

N
+ αN

)
= Op

(
1
N

)
A Taylor development of the exponential function leads to

f(x, y) =

(
1− 1

2
(AN (i) +AN (j))

η?√
N

+ βN

)
φ(x)φ(y)

×
[
1 +

x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j) + νN (x)

]

with

νN (x) = −x
2

2
γN −

y2

2
γ̃N + xy˜̃γN

+
1

2

(
x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j)− x2

2
γN −

y2

2
γ̃N + xy˜̃γN

)2

exp ũ

where |ũ| ≤ |x22
η?√
N
AN (i) + y2

2
η?√
N
AN (j) + xy η?√

N
BN (i, j)− x2

2 γN −
y2

2 γ̃N + xy ˜̃γN |.
Then,

∫ ∞
t

∫ ∞
t

f(x, y)dxdy =

(
1− 1

2
(AN (i) +AN (j))

η?√
N

+ βN

)
[
K2 +

1

2

η?√
N

(AN (j) +AN (i))K(K + tφ(t)) +BN (i, j)
η?√
N
φ(t)2

]
+ µN

= K2 +
1

2
(AN (i) +AN (j))

η?√
N
Ktφ(t) +BN (i, j)

η?√
N
φ(t)2 + µ′N

where µN =
(

1− 1
2(AN (i) +AN (j) + βN ) η?√

N

) ∫∞
t

∫∞
t φ(x)φ(y)νN (x)dxdy

and µ′N = µN + βN

(
K2 +

1

2

η?√
N

(AN (j) +AN (i))K(K + tφ(t)) +BN (i, j)
η?√
N
φ(t)2

)
− 1

2
(AN (i) +AN (j))

η?2

N
BN (i, j)φ(t)2.

This remainder and its order will be carefully studied in Section 5.8.2.
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Similarly, we can compute P(Yi = Yj = 0|Z) and P(Yi 6= Yj |Z):

∫ t

−∞

∫ t

−∞
f(x, y)dxdy = (1−K)2 − 1

2
(AN (i) +AN (j))

η?√
N

(1−K)tφ(t) +BN (i, j)
η?√
N
φ(t)2 + µ̃N

∫ t

−∞

∫ ∞
t

f(x, y)dxdy +

∫ ∞
t

∫ t

−∞
f(x, y)dxdy = 2K(1−K) + (AN (i) +AN (j))

η?√
N

(1− 2K)tφ(t)

− 2BN (i, j)
η?√
N
φ(t)2 + ˜̃µN .

Replacing these terms in the expression of the numerator of E(WiWj |Z, εi = εj = 1) given in
equation (5.15) leads to:

η?√
N
BN (i, j)φ(t)2 (1− P )

P (1−K)2
+ rN , (5.23)

where rN is a linear combination of µ′N , µ̃N and ˜̃µN .
Since there is no constant term in this numerator, we only need the development of order 0
of the denominator of E(WiWj |Z, εi = εj = 1) to obtain the first order approximation of
E(WiWj |Z, εi = εj = 1).
We obtain that the denominator can be written as

K2

P 2
+ r̃N ,

where r̃N is the sum of a term of order 1√
N

and a linear combination of µ′N , µ̃N and ˜̃µN . Thus,

we obtain that

E(WiWj |Z, εi = εj = 1) =

η?√
N
BN (i, j)φ(t)2 (1−P )

P (1−K)2
+ rN

K2

P 2 + r̃N
(5.24)

= η?GN (i, j)φ(t)2 P (1− P )

K2(1−K)2
+RN (i, j) (5.25)

where

RN (i, j) =

(
η?√
N
BN (i, j)φ(t)2 (1− P )

P (1−K)2
+ rN

)
r̃N +

K2

P 2
rN . (5.26)
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5.8.2 Proof of Theorem 4

Properties of Z

In the following proofs, we will use several properties of the matrix Z, which are stated in
Proposition 1.

Proposition 1. Uniformly in k,

(1) E(Z1,kZ2,k) = − 1
n−1 .

(2) E(Zp1,k) = O(1), for all p.

(3) E(Z2
1,kZ

2
2,k) = 1 + o(1).

(4) E[Z3
1,kZ2,k] = O

(
1
n

)
.

(5) E[Z2
1,kZ2,kZ3,k] = O

(
1
n

)
.

(6) E[Z1,kZ2,kZ3,kZ4,k] = O
(

1
n2

)
.

(7) E[Z5
1,kZ2,k] = O

(
1
n

)
.

(8) E[Z3
1,kZ

3
2,k] = O(1).

(9) E[Z4
1,kZ

2
2,k] = O(1).

(10) E[Z4
1,kZ2,kZ3,k] = O( 1

n).

(11) E[Z3
1,kZ

2
2,kZ3,k] = O( 1

n).

(12) E[Z3
1,kZ2,kZ3,kZ4,k] = O( 1

n2 ).

The proof of Proposition 1 is given in Appendix 5.D.

Proof of Lemma 7

Let us prove that, when n and N go to infinity and n/N goes to a,

1

n

∑
i 6=j

GN (i, j)2 P→ a,

where
P→ denotes the convergence in probability.

GN (i, j)2 =
1

N2

N∑
k=1

Z2
i,kZ

2
j,k +

1

N2

∑
k 6=l

Zi,kZj,kZi,lZj,l

Since Zi,k and Zj,l are independent for any i and j when k 6= l, we will always consider separately
the cases where k = l from the cases where k 6= l.
Indeed, let us show that
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1

n

1

N2

∑
i 6=j

N∑
k=1

Z2
i,kZ

2
j,k

P→ a (5.27)

and
1

n

1

N2

∑
i 6=j

∑
k 6=l

Zi,kZj,kZi,lZj,l
P→ 0. (5.28)

Note that

E(
1

n

1

N2

∑
i 6=j

N∑
k=1

Z2
i,kZ

2
j,k) =

1

n

1

N2

∑
i 6=j

N∑
k=1

E(Z2
i,kZ

2
j,k)

=
n− 1

N
(1 + o(1)) by (3) of Proposition 1

= a+ o(1)

Moreover,

Var(
1

n

1

N2

∑
i 6=j

N∑
k=1

Z2
i,kZ

2
j,k) =

1

n2

1

N4

N∑
k=1

∑
i1 6=j1

∑
i2 6=j2

E(Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k)−

1

n2

1

N4

N∑
k=1

∑
i 6=j

E(Z2
i,kZ

2
j,k)

2

(5.29)

The second term of (5.29) can be rewritten as:

1

n2

1

N4

N∑
k=1

∑
i 6=j

E(Z2
i,kZ

2
j,k)

2

=
Nn2(n− 1)2

n2N4
(1 + o(1)) by (3) of Proposition 1

= O

(
1

n

)

∑
i1 6=j1

∑
i2 6=j2

E(Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k) ≤ E(

∑
i1,j1,i2,j2

Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k) = E

(
n∑
i=1

Z2
i,k

)4

= n4

This last equality comes from the definition of Z as a centered and normalized variable given in
Equation (5.9), which implies that for all k,

n∑
i=1

Z2
i,k = n.

Then,
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1

n2

1

N4

N∑
k=1

∑
i1 6=j1

∑
i2 6=j2

E(Z2
i1,kZ

2
j1,kZ

2
i2,kZ

2
j2,k) ≤

n4N

n2N4
= O

(
1

n

)
.

This proves (5.27).

E(
1

n

1

N2

∑
i 6=j

∑
k 6=l

Zi,kZj,kZi,lZj,l) =
1

n

1

N2

∑
i 6=j

∑
k 6=l

E(Zi,kZj,k)E(Zi,lZj,l)

=
n(n− 1)N(N − 1)

nN2(n− 1)2
by (1) of Proposition 1

= O

(
1

n

)

Var(
1

n

1

N2

∑
i 6=j

∑
k 6=l

Zi,kZj,kZi,lZj,l) =
1

n2

1

N4

∑
k 6=l

∑
i1 6=j1

∑
i2 6=j2

E(Zi1,kZi2,kZj1,kZj2,k)E(Zi1,lZi2,lZj1,lZj2,l)

− 1

n2

1

N4

∑
k 6=l

∑
i 6=j

E(Zi,kZj,k)E(Zi,lZj,l)

2

1

n2

1

N4

∑
k 6=l

∑
i 6=j

E(Zi,kZj,k)E(Zi,lZj,l)

2

=
N(N − 1)n2(n− 1)2

n2N4(n− 1)4
by (1) of Proposition 1

= O

(
1

n4

)
In the first term, {i1, i2, j1, j2} can be of cardinal 2, 3 or 4 and counting the number of combi-
nations gives the expression:∑
i1 6=j1

∑
i2 6=j2

E(Zi1,kZi2,kZj1,kZj2,k)E(Zi1,lZi2,lZj1,lZj2,l) = 2
∑
i 6=j

E(Z2
i,kZ

2
j,k)E(Z2

i,lZ
2
j,l)

+ 4
∑

i 6=j1 6=j2

E(Z2
i,kZj1,kZj2,k)E(Z2

i,lZj1,lZj2,l)

+
∑

i1 6=i2 6=j1 6=j2

E(Zi1,kZi2,kZj1,kZj2,k)E(Zi1,lZi2,lZj1,lZj2,l)

= 2n(n− 1)(1 + o(1)) + 4
n(n− 1)(n− 2)

n
o(1) +

n(n− 1)(n− 2)(n− 3)

n2
o(1) = O(n2)

This was obtained by using (3),(5) and (6) of Proposition 1.
Finally,

V ar

 1

n

1

N2

∑
i 6=j

∑
k 6=l

Zi,kZj,kZi,lZj,l

 = O

(
1

n2

)
.

This completes the proof of (5.28).
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Proof of Lemma 8

Note that

P(EcN ) ≤ n sup
i

P

(
|
N∑
k=1

(Z2
i,k − 1)| ≥ NεN

)
+ n(n− 1) sup

i 6=j
P

(
|
N∑
k=1

Zi,kZj,k| ≥ NεN

)

= nP

(
|
N∑
k=1

(Z2
1,k − 1)| ≥ NεN

)
+ n(n− 1)P

(
|
N∑
k=1

Z1,kZ2,k| ≥ NεN

)
.

Let δ be a positive real number such that
√
δ/2c ∈ V0 and δ ≤ δmin

4 , where V0 and δmin are
defined in Assumptions 2 and 2.1 respectively.

P

(
|
N∑
k=1

(Z2
i,k − 1)| ≥ NεN

)
≤ P

(
∃k, s2

k ≤ δ
)

+ P

(
|
N∑
k=1

(Ai,k − Āk)2 − s2
k)| ≥ NδεN

)

Note also that

{
∃k, s2

k ≤ δ
}

=
N⋃
k=1

{
n∑
i=1

(Ai,k − Āk)2 ≤ nδ

}
=

N⋃
k=1

{
N∑
i=1

(Ai,k −mk +mk − Āk)2 ≤ nδ

}

where mk = E[Ai,k].

Observe that{
n∑
i=1

(Ai,k −mk +mk − Āk)2 ≤ nδ

}
⊂
{
|Āk −mk| ≥

√
δ
}
∪

{
n∑
i=1

(Ai,k −mk)
2 ≤ 4nδ

}
.

(5.30)

Let us show that

P(|Āk −mk| ≥
√
δ) ≤ 2C exp

{
−nδ

4d

}
. (5.31)

P(|Āk −mk| ≥
√
δ) = P(Āk −mk ≥

√
δ) + P(Āk −mk ≤ −

√
δ)

By Chernoff inequality, for all λ ≥ 0,

P(n(Āk −mk) ≥ n
√
δ) ≤ exp

{
−n
√
δλ+ log

(
E[exp(n(Āk −mk))]

)}
= exp

{
−n
√
δλ+ n log (E[exp(Ai,k −mk)])

}
Then, by Assumption 1.2, for all positive values of λ in V0,

P(n(Āk −mk) ≥ n
√
δ) ≤ C exp

{
−n
√
δλ+ ndλ2

}
. (5.32)
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The right term of (5.32) is maximum when

λ =

√
δ

2d
,

which implies that

P(Āk −mk ≥
√
δ) ≤ C exp

{
−nδ

4d

}
.

Similarly, for all negative values of λ in V0,

P(n(Āk −mk) ≤ −n
√
δ) ≤ C exp

{
n
√
δλ+ ndλ2

}
. (5.33)

The right term of (5.33) is maximum when

λ = −
√
δ

2d
,

which implies that

P(Āk −mk ≥
√
δ) ≤ C exp

{
−nδ

4d

}
,

which proves (5.31).

P(

n∑
i=1

(Ai,k −mk)
2 ≤ 4nδ) ≤ P(

n∑
i=1

[(Ai,k −mk)
2 − σ2

k] ≤ n(4δ − δmin))

Since 4δ − δmin < 0 by assumption on δ, we apply again Chernoff inequality, which gives us
that:

P(

n∑
i=1

[(Ai,k −mk)
2 − σ2

k] ≤ n(4δ − δmin)) ≤ C exp

{
−n(4δ − δmin)2

2d

}
This result, combined with (5.31), proves that

P
(
∃k, s2

k ≤ δ
)
≤ 2NC exp

{
−nδ

4d

}
+NC exp

{
−n(4δ − δmin)2

2d

}
(5.34)

Notice that{∣∣∣∣∣
N∑
k=1

(Ai,k − Āk)2 − s2
k

∣∣∣∣∣ ≥ NδεN
}

=

{
1

n

∣∣∣∣∣
N∑
k=1

n∑
l=1

(Ai,k − Āk)2 − (Al,k − Āk)2

∣∣∣∣∣ ≥ NδεN
}

⊂

{∣∣∣∣∣
N∑
k=1

(Ai,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ NδεN
4

}
∪

{∣∣∣∣∣
N∑
k=1

n∑
l=1

(Al,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ nNδεN
4

}

∪

{∣∣∣∣∣
N∑
k=1

(Ai,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ NδεN
8

}
∪

{∣∣∣∣∣
N∑
k=1

n∑
l=1

(Al,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ nNδεN
8

}
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Using Chernoff inequality and Assumption 1.1, we can prove that

P

(∣∣∣∣∣
N∑
k=1

(Ai,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ NδεN
4

)
≤ 2C exp

{
−
Nδ2ε2N

64d

}
and

P

(∣∣∣∣∣
N∑
k=1

n∑
l=1

(Al,k −mk)
2 − σ2

k

∣∣∣∣∣ ≥ nNδεN
4

)
≤ 2C exp

{
−
Nnδ2ε2N

64d

}
Moreover,

P

(∣∣∣∣∣
n∑
k=1

(Ai,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ NδεN
4

)
≤ P

(
n∑
k=1

(Ai,k −mk)
2 ≥ NnδεN

8

)

+ P

∣∣∣∣∣∣
n∑
k=1

∑
l 6=i

(Ai,k −mk)(mk −Al,k)

∣∣∣∣∣∣ ≥ nN δεN
8


Using Chernoff inequality and Assumption 1.3, we obtain that

P

∣∣∣∣∣∣
n∑
k=1

∑
l 6=i

(Ai,k −mk)(mk −Al,k)

∣∣∣∣∣∣ ≥ nN δεN
8

 ≤ 2C exp

{
−
nNδ2ε2N

256d

}

and with Assumption 1.1 we have

P

(
n∑
k=1

(Ai,k −mk)
2 ≥ NnδεN

8

)
≤ C exp

{
−
n2Nδ2ε2N

256d
+
nNδδmaxεN

16d
− Nδmax

4d

}
, (5.35)

with n2Nε2N = a2N2+2γ and nNεN = aN
3
2

+γ where γ > 0, which implies that the main

term in the exponential is −n2Nδ2ε2N
256d .

Similarly, we can show that

P

(∣∣∣∣∣
N∑
k=1

n∑
l=1

(Al,k −mk)(mk − Āk)

∣∣∣∣∣ ≥ nNδεN
8

)
≤ 2C exp

{
−
n2Nδ2ε2N

256d

}
+ C exp

{
−
n3Nδ2ε2N

256d
+
n2NδδmaxεN

16d
− Nnδmax

4d

}
.

This concludes the proof that for all values of q,

P

(
|
n∑
k=1

(Z2
i,k − 1)| ≥ NεN

)
= O

(
1

N q

)
.
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We use similar techniques to otain an upper bound for P
(∣∣∣∣ n∑

k=1

Zi,kZj,k

∣∣∣∣ ≥ NεN).

P

(∣∣∣∣∣
n∑
k=1

Zi,kZj,k

∣∣∣∣∣ ≥ NεN
)

= P

(∣∣∣∣∣
n∑
k=1

(Ai,k − Āk)(Aj,k − Āk)
s2
k

∣∣∣∣∣ ≥ NεN
)

≤ P(∃k, s2
k ≤ δ) + P

(∣∣∣∣∣
n∑
k=1

(Ai,k − Āk)(Aj,k − Āk)

∣∣∣∣∣ ≥ NδεN
)

Since we have already proved (5.34) and (5.35), we will conclude the proof by showing that

P

(∣∣∣∣∣
n∑
k=1

(Ai,k −mk)(Aj,k −mk)

∣∣∣∣∣ ≥ N δεN
4

)
≤ 2C exp

{
−NδεN

64d

}
, (5.36)

and

P

(
n∑
k=1

(Āk −mk)
2 ≥ N δεN

4

)
≤ N2C exp

{
−NδεN

16d

}
. (5.37)

(5.36) is obtained using Assumption 1.3 and Chernoff inequality.

P

(
n∑
k=1

(Āk −mk)
2 ≥ N δεN

4

)
≤ P

(
sup
k

(mk − Āk)2 ≥ δεN
4

)
≤ N sup

k
P
(

(mk − Āk)2 ≥ δεN
4

)
≤ N2C exp

{
−NδεN

16d

}
,

which proves (5.37) and achieves the proof of Lemma 8.

Proof of Lemma 9

According to the results of Section 5.8.2, we have

1

n

∑
i 6=j

E[WiWj |Z, εi = εj = 1]GN (i, j)1EN =
1

n

∑
i 6=j

(cη?GN (i, j) +RN (i, j))GN (i, j)1EN

= acη? +
1

n

∑
i 6=j

RN (i, j)GN (i, j)1EN + op(1)

Thus, we just need to prove that
∑
i 6=j

GN (i, j)RN (i, j)1EN = op(1).

We shall see that RN (i, j)1EN may be upper bounded by a finite sum of terms of the form
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|GN (i, j)|k1 |GN (i, i)− 1|k2 |GN (j, j)− 1|k3 , (5.38)

with k in J2, 22K and k1 + k2 + k3 = k.
Thus, 1

n

∑
i 6=j
RN (i, j)GN (i, j)1EN is upper bounded by a finite sum of terms of the form

1

n

∑
i 6=j
|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k3 .

But

1

n

∑
i 6=j
|GN (i, j)|k1+1|GN (i, i)− 1|k2 |GN (j, j)− 1|k31EN ≤ ε

k1+k2+k3+1
N

n(n− 1)

n

= O

(
1

N
1
2
−3γ

)
= o(1),

since k1 + k2 + k3 + 1 ≥ 3 and γ < 1/10.
This achieves the proof of Lemma 9.
Let us explain why Equation (5.38) holds.
We need to evaluate |RN (i, j)1EN |. Then, let us look at the previous remainders which compose
RN (i, j), and we will provide upper bounds when EN holds.

|αN | = |AN (i)AN (j)−BN (i, j)2|η
?2

N
+

1

2
|(AN (i) +AN (j))

η?√
N

+ (AN (i)AN (j)−BN (i, j)2)
η?2

N
|2 1

|1 + α̃|3
,

with |α̃| ≤ |(AN (i) +AN (j)) η?√
N

+ (AN (i)AN (j)−BN (i, j)2)η
?2

N | ≤ 2εNη
? + 2ε2Nη

?2.

Similarly,

|βN | =
1

2
|AN (i)AN (j)−BN (i, j)2|η

?2

N
+

1

2
|1
2

(AN (i) +AN (j))
η?√
N

+
1

2
(AN (i)AN (j)−BN (i, j)2)

η?2

N
|2 3

4

1

|1 + β̃|
5
2

,

with |β̃| ≤ |12(AN (i) +AN (j)) η?√
N

+ 1
2(AN (i)AN (j)−BN (i, j)2)η

?2

N | ≤ εNη
? + ε2Nη

?2.

The remainders γN ,γ̃N and ˜̃γN are only products of αN , AN (i), AN (j) and BN (i, j).

|γN | ≤ |AN (j)(AN (i) +AN (j))η
?2

N |+ |αN (1 +AN (j) η?√
N

)|,

|γ̃N | ≤ |AN (i)(AN (i) +AN (j))η
?2

N |+ |αN (1 +AN (i) η?√
N

)| and

| ˜̃γN | ≤ | η
?
√
N
BN (i, j)|

(
|(AN (i) +AN (j)) η?√

N
|+ |αN |

)
The next remainder is µN , which is defined as

µN =

(
1− 1

2
(AN (i) +AN (j))

η?√
N

)∫ ∞
t

∫ ∞
t

φ(x)φ(y)νN (x, y)dxdy,
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with

νN (x, y) = −x
2

2
γN −

y2

2
γ̃N + xy ˜̃γN

+
1

2

(
x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j)− x2

2
γN −

y2

2
γ̃N + xy ˜̃γN

)2

exp ũ

Integrating the first terms of νN (x, y) gives

∫ ∞
t

∫ ∞
t

φ(x)φ(y)

(
−x

2

2
γN −

y2

2
γ̃N + xy ˜̃γN

)
dxdy = −1

2
K(tφ(t) +K)(γN + γ̃N ) + φ(t)2 ˜̃γN .

.
Moreover, we have the upper bound

exp ũ ≤ max(exp

{
x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j) +

x2

2
γN −

y2

2
γ̃N − xy ˜̃γN

}
, 1).

If max(exp
{
x2

2
η?√
N
AN (i) + y2

2
η?√
N
AN (j) + xy η?√

N
BN (i, j)− x2

2 γN −
y2

2 γ̃N + xy ˜̃γN

}
, 1) = 1,

∫ ∞
t

∫ ∞
t

φ(x)φ(y)νN (x, y)dxdy

≤
∫ ∞
t

∫ ∞
t

φ(x)φ(y)

(
x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j)− x2

2
γN −

y2

2
γ̃N + xy ˜̃γN

)2

dxdy

=
1

N
J, (5.39)

where

J =
∫∞
t

∫∞
t φ(x)φ(y)

(
x2

2 η
?AN (i) + y2

2 η
?AN (j) + xyη?BN (i, j)− x2

2
γN√
N
− y2

2
γ̃N√
N

+ xy
˜̃γN√
N

)2
dxdy

is finite.
Otherwise,

exp(ũ) ≤ exp

{
x2

2
(εNη

? + P1(εN )) +
y2

2
(εNη

? + P2(εN )) + xy(εNη
? + P3(εN ))

}
,

where P1, P2, P3 are polynomial functions. This expression comes from upper bounding the
terms AN (i)/N , AN (j)/N and BN (i, j)/N by εN in γN , γ̃N and ˜̃γN .
There exists N0, such that for all N ≥ N0, εNη

? + P1(εN ) ≤ 1
4 , εNη

? + P2(εN ) ≤ 1
4 and

εNη
? + P3(εN ) ≤ 1

4 .
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Then exp(ũ) ≤ exp
{
x2

8 + y2

8 + xy
4

}
≤ exp

{
x2

4 + y2

4

}
.

Thus, similarly to the expression 5.39,

∫ ∞
t

∫ ∞
t

φ(x)φ(y)

(
x2

2

η?√
N
AN (i) +

y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j) +

x2

2
γN −

y2

2
γ̃N − xy ˜̃γN

)2

exp(ũ)dxdy

≤ 1

2π

∫ ∞
t

∫ ∞
t

exp(−x
2

4
) exp(−y

2

4
)

(
x2

2

η?√
N
AN (i)

+
y2

2

η?√
N
AN (j) + xy

η?√
N
BN (i, j) +

x2

2
γN −

y2

2
γ̃N − xy ˜̃γN

)2

dxdy

≤ 1

N
J ′

where J ′ is finite.
Similarly to the computations made for αN , βN , γN , µN , all the remainder terms can be upper
bounded by products of AN (i)/

√
N , AN (j)/

√
N and BN (i, j)/

√
N , which proves (5.38).

Proof of Lemma 10

In this section, all the expectations that we consider are conditionally to the presence of the
observed individuals in the study, for instance {εi = εj = 1} or {εi1 = εi2 = εi3 = 1} . However,
for the sake of simplicity, we will not always make explicit such conditioning.
Let us show that

Var(
1

n

∑
i 6=j

(WiWj − E[WiWj |Z])GN (i, j)1EN )→ 0,

that is

1

n2

∑
i1 6=i2
i3 6=i4

E [(E[Wi1Wi2Wi3Wi4|Z]− E[Wi1Wi2 |Z]E[Wi3Wi4 |Z])GN (i1, i2)GN (i3, i4)1EN ]→ 0

(5.40)

For this purpose, we will separate three cases depending on the cardinal of the set {i1, i2, i3, i4}
in the sum of Equation (5.40).
-If card({i1, i2, i3, i4})=2, the corresponding terms in (5.40) are equal to

1

n2

∑
i 6=j

E
[
E[(W2

iW
2
j |Z]− E[WiWj |Z]2)GN (i, j)2

1EN

]
≤ 1

n2

∑
i 6=j

E[(α+ ρN (i, j))GN (i, j)2
1EN ]

where α is a positive constant and ρN (i, j) can be upper bounded by a finite product of GN (i, j),
GN (i, i)− 1 and GN (j, j)− 1, according to proof of Lemma 9. This result is obtained by using
a similar decomposition of E[W2

iW
2
j |Z] than the one that we explicited for E[WiWj |Z].
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Since E[GN (i, j)2
1EN ] ≤ ε2N and all terms of ρN (i, j) are upper bounded by a finite sum of εkN ,

with k greater than 1, which all tend to 0, it is clear that

1

n2

∑
i 6=j

E
[
E[(W2

iW
2
j |Z]− E[WiWj |Z]2)GN (i, j)2

1EN

]
→ 0.

- If card({i1, i2, i3, i4})=3, the corresponding terms in (5.40) are equal to

1

n2

∑
i1 6=i2 6=i3

E
[
(E[W2

i1Wi2Wi3 |Z]− E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])GN (i1, i2)GN (i1, i3)1EN
]
.

(5.41)

Since the sum of Equation (5.41) has n(n− 1)(n− 2) terms, we have the refine the upper bound
that we used in the case where the cardinal of {i1, i2, i3, i4} was equal to 2. Indeed, we will use
the following proposition:

Proposition 2. E[W2
i1

Wi2Wi3 |Z] has no term of order less than 1/
√
N , that is no constant term.

Let us explain why Proposition 2 is enough to prove

1

n2

∑
i1 6=i2 6=i3

E
[
(E[W2

i1Wi2Wi3 |Z]− E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])GN (i1, i2)GN (i1, i3)1EN
]
→ 0.

(5.42)

Let us first recall that, according to Lemma 9,

E[Wi1Wi2 |Z]E[Wi1Wi3 |Z] = c2η?2GN (i1, i2)GN (i1, i3) + cη?GN (i1, i3)RN (i1, i2)

+ cη?GN (i1, i2)RN (i1, i3) +RN (i1, i2)RN (i1, i3),

where, if EN holds, all these terms are upper bounded by a finite sum of terms of the form εkN ,
with k ≥ 2.
Then,

E [E[Wi1Wi2 |Z]E[Wi1Wi3 |Z]GN (i1, i2)GN (i1, i3)1EN ]

can be upper bounded by a finite sum of terms of the form εkN , with k ≥ 4.
Since

N(N − 1)(N − 2)ε4N
n2

→ 0,
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it shows that

1

n2

∑
i1 6=i2 6=i3

E [E[Wi1Wi2 |Z]E[Wi1Wi3 |Z])1EN ]→ 0.

Similarly, according to Proposition 2, each term of E
[
E[W2

i1
Wi2Wi3 |Z]GN (i1, i2)GN (i1, i3)1EN

]
can be upper bounded by a finite sum of εkN , with k ≥ 3.
Since

n(n− 1)(n− 2)ε3N
n2

= O

(
1

N1/2−3γ

)
→ 0,

it achieves the proof of (5.41).
- If card({i1, i2, i3, i4})=4, let us first observe that

N(N − 1)(N − 2)(N − 3)ε5N
n2

→ 0,

which means that we shall only focus on the approximation of
E[Wi1Wi2Wi3Wi4|Z]− E[Wi1Wi2 |Z]E[Wi3Wi4 |Z] of order 1/N .
Let us recall that

E [Wi1Wi2 |Z]E[Wi3Wi4 |Z] = c2η?2GN (i1, i2)GN (i3, i4) +RN (i1, i2, i3, i4),

where

RN (i1, i2, i3, i4) = cη?GN (i1, i2)RN (i3, i4) + cη?GN (i3, i4)RN (i1, i2) +RN (i1, i2)RN (i3, i4)

is a remainder, each term of which is upper bounded by a finite sum of terms of the form εkN ,
with k ≥ 2. In particular, it implies that

E[
N(N − 1)(N − 2)(N − 3)

n2
RN (i1, i2, i3, i4)GN (i1, i2)GN (i3, i4)]→ 0.

Thus, we need to prove that

1

n2

∑
i1 6=i2 6=i3

E
[
(E[Wi1Wi2Wi3Wi4 |Z]− c2η?2GN (i1, i2)GN (i3, i4))GN (i1, i2)GN (i3, i4)1EN

]
→ 0,

(5.43)

To do so, we shall prove first the following proposition:

Proposition 3. The terms of order less than or equal to 1/
√
N in E[Wi1Wi2Wi3Wi4|Z] are null.
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Chapter 5 -Heritability estimation in case-control studies

The term of order exactly 1/N in E[Wi1Wi2Wi3Wi4|Z] contains all combinations of prod-
ucts of two terms between GN (i1, i2), GN (i1, i3), GN (i1, i4), GN (i2, i3), GN (i2, i4), GN (i3, i4),
GN (i1, i1)− 1, GN (i2, i2)− 1, GN (i3, i3)− 1 and GN (i4, i4)− 1.
We will demonstrate the propositions:

Proposition 4. The term in GN (i1, i2)GN (i3, i4) of E[Wi1Wi2Wi3Wi4|Z] is equal to
c2η?2GN (i1, i2)GN (i3, i4).

Proposition 5. For all terms TN (i1, i2, i3, i4) of order 1/N in E[Wi1Wi2Wi3Wi4|Z] ,

1

n2
E[TN (i1, i2, i3, i4)GN (i1, i2)GN (i3, i4)]→ 0,

except for the term in GN (i1, i2)GN (i3, i4).

Propositions 3, 4 and 5 prove (5.43).
Let us prove now Propositions 2, 3, 5 and 4.

If card({i1, i2, i3, i4})=3, conditionally to {εi1 = εi2 = εi3 = 1}, W2
i1

Wi2Wi3 can take several
values:
• (1−P )2

P 2 if Yi1 = Yi2 = Yi3 = 1.

• −(1−P )
P if Yi1 = 1 and Yi2 6= Yi3 .

• 1 if Yi1 = 1 and Yi2 = Yi3 = 0 or Yi1 = 0 and Yi2 = Yi3 = 1.
• −P1−P if Yi1 = 0 and Yi2 6= Yi3 .

• P 2

(1−P )2
if Yi1 = Yi2 = Yi3 = 0.

Since each case has a probability 1 and each control a probability K(1− P )/P (1−K) to be in
the study (these probabilities are given in Equation (5.12) and (5.13)),

E[W2
i1Wi2Wi3 |Z, εi1 = εi2 = εi3 = 1] =

1

P(εi1 = εi2 = εi3 = 1)

×
{

(1− P )2

P 2
P(Yi1 = Yi2 = Yi3 = 1|Z)− 1− P

P

(
K(1− P )

P (1−K)

)
P(Yi1 = 1,Yi2 6= Yi3 |Z)

+

(
K(1− P )

P (1−K)

)
P(Yi1 = 0,Yi2 = Yi3 = 1|Z) +

(
K(1− P )

P (1−K)

)2

P(Yi1 = 1,Yi2 = Yi3 = 0|Z)

− P

1− P

(
K(1− P )

P (1−K)

)2

P(Yi1 = 0,Yi2 6= Yi3 |Z)

+
(1− P )2

P 2

(
K(1− P )

P (1−K)

)3

P(Yi1 = Yi2 = Yi3 = 0|Z)

}
(5.44)

The computations leading to (5.44) are very similar to those leading to (5.15), which are detailed
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Chapter 5 -Heritability estimation in case-control studies

in Appendix 5.B.
The development of order 0 of P(Yi1 = Yi2 = Yi3 = 1|Z) is

1

(2π)3/2

∫ +∞

t

∫ +∞

t

∫ +∞

t
φ(x)φ(y)φ(z)dxdydz = K3 +Op

(
1√
N

)
.

Similarly,

P(Yi1 = 1,Yi2 6= Yi3 |Z) = 2K2(1−K) +Op

(
1√
N

)
P(Yi1 = 0,Yi2 = Yi3 = 1|Z) = K2(1−K) +Op

(
1√
N

)
P(Yi1 = 1,Yi2 = Yi3 = 0|Z) = K(1−K)2 +Op

(
1√
N

)
P(Yi1 = 0,Yi2 6= Yi3 |Z) = 2K(1−K)2 +Op

(
1√
N

)
P(Yi1 = Yi2 = Yi3 = 0|Z) = (1−K)3 +Op

(
1√
N

)
Replacing all these expressions in (5.44) gives us that the approximation of order 0 is null, which
achieves the proof of Proposition 2.
Let us prove now Proposition 3.
If card({i1, i2, i3, i4})=4, let us compute the approximation of order 1/

√
N of E[Wi1Wi2Wi3Wi4 |Z].

Conditionally to {εi1 = εi2 = εi3 = εi4 = 1}, Wi1Wi2Wi3Wi4 can take values:

• (1−P )2

P 2 if all individuals are cases, that is Yi1 = Yi2 = Yi3 = Yi4 = 1.

• −(1−P )
P if one individual is a control and the three others are cases.

• 1 if two individuals are controls and two are cases.
• −P1−P if one individual is a case and the three others are controls.

• P 2

(1−P )2
if all individuals are controls.

E[Wi1Wi2Wi3Wi4 |Z, εi1 = εi2 = εi3 = εi4 = 1] =
1

P(εi1 = εi2 = εi3 = εi4 = 1)

×
{

(1− P )2

P 2
P(”4 cases”|Z)− 1− P

P

(
K(1− P )

P (1−K)

)
P(”3 cases, 1 control”|Z)

+

(
K(1− P )

P (1−K)

)2

P(”2 cases, 2 controls”|Z)− 1− P
P

(
K(1− P )

P (1−K)

)3

P(”3 controls, 1 case”|Z)

−+
(1− P )2

P 2

(
K(1− P )

P (1−K)

)4

P(”4 controls”|Z)

}
(5.45)

The covariance matrix of (li1 , li2 , li3 , li4) is
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Chapter 5 -Heritability estimation in case-control studies

Σ =


1 + η?(GN (i1, i1)− 1) GN (i1, i2) GN (i1, i3) GN (i1, i4)

GN (i1, i2) 1 + η?(GN (i2, i2)− 1) GN (i2, i3) GN (i2, i4)
GN (i1, i3) GN (i2, i3) 1 + η?(GN (i3, i3)− 1) GN (i3, i4)
GN (i1, i4) GN (i2, i4) GN (i3, i4) 1 + η?(GN (i4, i4)− 1)

 .

For the sake of clarity, let us denote A1 = 1√
N

N∑
k=1

(Z2
i1,k
−1) =

√
N(GN (i1, i1)−1), and similarly

we define A2, A3 and A4.
Let us also denote C1,2 =

√
NGN (i1, i2) and similarly, C1,3, . . . , C3,4.

Then, let us rewrite Σ as:

Σ =


1 + η?√

N
A1

C1,2√
n

C1,3√
N

C1,4√
N

C1,2√
N

1 + η?√
N
A2

C2,3√
N

C2,4√
N

C1,3√
N

C2,3√
N

1 + η?√
N
A3

C3,4√
N

C1,4√
N

C2,4√
N

C3,4√
N

1 + η?√
N
A4

 .

The approximation of order 1/
√
n of its inverse matrix is given by

Σ−1 ' |Σ|−1

×


1 + η?√

N
(A2 +A3 +A4) −C1,2√

N
−C1,3√

N
−C1,4√

N

−C1,2√
N

1 + η?√
N

(A1 +A3 +A4) −C2,3√
N

−C2,4√
N

−C1,3√
N

−C2,3√
N

1 + η?√
N

(A1 +A2 +A4) −C3,4√
N

−C1,4√
N

−C2,4√
N

−C3,4√
N

1 + η?√
n

(A1 +A2 +A2)


where |Σ|−1 = 1− η?√

N
(A1 +A2 +A3 +A4) +Op

(
1
N

)
.

Let us compute

P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z) =

∫ +∞

t

∫ +∞

t

∫ +∞

t

∫ +∞

t
f(w, x, y, z)dwdxdydz,

where
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Chapter 5 -Heritability estimation in case-control studies

f(w, x, y, z) =
1

(2π)2|Σ|
1
2

exp

{
− w2

2|Σ|
(1 +

η?√
n

(A2 +A3 +A4))− · · · − z2

2|Σ|
(1 +

η?√
N

(A1 +A2 +A3))

+
wx

|Σ|
η?√
n
C1,2 +

wy

|Σ|
η?√
n
C1,3 + · · ·+ yz

|Σ|
η?√
N
C3,4 +Op

(
1

N

)}
=

1

(2π)2|Σ|
1
2

exp

{
−w

2

2
(1− η?√

N
(A1 +A2 +A3 +A4))(1 +

η?√
N

(A2 +A3 +A4))− . . .

− z2

2
(1− η?√

N
(A1 +A2 +A3 +A4))(1 +

η?√
n

(A1 +A2 +A3))

+wx
η?√
N

(1− η?√
N

(A1 +A2 +A3 +A4))C1,2 + . . .

+yz
η?√
N

(1− η?√
N

(A1 +A2 +A3 +A4))C3,4 +Op

(
1

N

)}
=

1

|Σ|
1
2

φ(w)φ(x)φ(y)φ(z) exp

{
w2

2

η?√
N
A1 + · · ·+ z2

2

η?√
N
A4

−wx η?√
N
C1,2 − · · · − yz

η?√
N
C3,4 +Op

(
1

N

)}
=

1

|Σ|
1
2

φ(w)φ(x)φ(y)φ(z)

[
1 +

w2

2

η?√
N
A1 + · · ·+ z2

2

η?√
N
A4 − wx

η?√
N
C1,2 − . . .

−yz η?√
N
C3,4 +Op

(
1

N

)]
(5.46)

Finally,

• P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z) =
1

|Σ|
1
2

[
K4 +

K3

2
(tφ(t) +K)

η?√
n

(A1 +A2 +A3 +A4)

+K2φ(t)2 η
?

√
n

(C1,2 + · · ·+ C3,4) +Op

(
1

N

)]

Similarly, we compute

• P(“1 control, 3 cases”) =
1

|Σ|
1
2

[
4K3(1−K)

+
K2

2
((3− 4K)tφ(t) + 4K(1−K))

η?√
N

(A1 +A2 +A3 +A4)

+2φ(t)2K(1− 2K)
η?√
N

(C1,2 + · · ·+ C3,4) +Op

(
1

N

)]
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• P(“2 controls, 2 cases”) =
1

|Σ|
1
2

[
6K2(1−K)2

+
3K(1−K)

2
((1− 2K)tφ(t) + 2K(1−K))

η?√
N

(A1 +A2 +A3 +A4)

+φ(t)2(6K2 − 6K + 1)
η?√
N

(C1,2 + · · ·+ C3,4) +Op

(
1

N

)]

• P(“3 controls, 1 case”) =
1

|Σ|
1
2

[
4K(1−K)3

+
(1−K)2

2
((1− 4K)tφ(t) + 4K(1−K))

η?√
n

(A1 +A2 +A3 +A4)

−2φ(t)2(1−K)(1− 2K)
η?√
N

(C1,2 + · · ·+ C3,4) +Op

(
1

N

)]

• P(Yi1 = Yi2 = Yi3 = Yi4 = 0|Z) =
1

|Σ|
1
2

[
(1−K)4

+
(1−K)3

2
(−tφ(t) + 1−K)

η?√
n

(A1 +A2 +A3 +A4)

+(1−K)2φ(t)2 η?√
N

(C1,2 + · · ·+ C3,4) +Op

(
1

N

)]

Regrouping all the first terms in the expression of E[Wi1Wi2Wi3Wi4 |Z] given in (5.45) leads
to

1

|Σ|
1
2

[
(1− P )2

P 2
K4 − (1− P )

P

(
K(1− P )

P (1−K)

)
4K3(1−K) +

(
K(1− P )

P (1−K)

)2

6K2(1−K)2

− P

1− P

(
K(1− P )

P (1−K)

)3

4K(1−K)3 +
P 2

(1− P )2

(
K(1− P )

P (1−K)

)4

(1−K)4

]

=
1

(2π)2|Σ|
1
2

(
(1− P )2K4

P 2

)
[1− 4 + 6− 4 + 1] = 0

Similarly we regroup the terms in η?√
N

(A1 +A2 +A3 +A4):
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1

|Σ|
1
2

η?√
N

(A1 +A2 +A3 +A4)

[
(1− P )2

P 2

K3

2
(tφ(t) +K)

− (1− P )

P

(
K(1− P )

P (1−K)

)
K2

2
((3− 4K)tφ(t) + 4K(1−K))

+

(
K(1− P )

P (1−K)

)2 3K(1−K)

2
((1− 2K)tφ(t) + 2K(1−K))

− P

1− P

(
K(1− P )

P (1−K)

)3 (1−K)2

2
((1− 4K)tφ(t) + 4K(1−K))

+
P 2

(1− P )2

(
K(1− P )

P (1−K)

)4 (1−K)3

2
(−tφ(t) + 1−K)

]

=
1

(2π)2|Σ|
1
2

(
(1− P )2K4

2P 2

)
[1− 4 + 6− 4 + 1]

+
1

(2π)2|Σ|
1
2

(
(1− P )2K3

2P 2(1−K)

)
[1−K − 3 + 4K + 3(1− 2K)− 1 + 4K −K] = 0

Finally, we regroup all the terms in η?√
n

(C1,2 + · · ·+ C3,4):

1

|Σ|
1
2

(
(1− P )2K2

P 2(1−K)2

)
φ(t)2

[
(1−K)2 − 2(1−K)(1− 2K) + 6K2 − 6K + 1 + 2K(1− 2K) +K2

]
= 0

This proves Proposition 3.

Let us prove Proposition 5.
Let us denote f2(w, x, y, z) the density function defined in (5.46) developed till order 1/N .
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f2(w, x, y, z) =
1

|Σ|
1
2

φ(w)φ(x)φ(y)φ(z)

[
1 +

w2

2
(
η?√
N
A1 −

η?2

N
(A2

1 + C2
1,2 + C2

1,3 + C2
1,2)

+ · · ·+ z2

2
(
η?√
N
A4 −

η?2

N
(A2

4 + C2
1,4 + C2

2,4 + C2
3,4)

+ wx(C1,2
η?√
N
− η?2

N
[(A1 +A2)C1,2 + C1,3C2,3 + C1,4C2,4]) + . . .

+ yz(C3,4
η?√
N
− η?2

N
[(A3 +A4)C3,4 + C1,3C1,4 + C2,3C2,4])

+
w4

8

η?2

N
A2

1 + · · ·+ z4

8

η?2

N
A2

4 +
w2x2

2

η?2

N
(C2

1,2 +
A1A2

2
) + . . .

+
y2z2

2

η?2

N
(C2

3,4 +
A3A4

2
) +

w3x

2

η?2

N
A1C1,2 + . . .

+
z3y

2

η?2

N
A4C3,4 + w2xy

η?2

N
[
A1C2,3

2
+ C1,2C1,3] + . . .

+z2xy
η?2

N
[
A4C2,3

2
+ C2,4C3,4] + wxyz

η?2

N
(C1,2C3,4 + C2,3C1,4 + C1,3C2,4)

]
(5.47)

In order to prove Proposition 5, we will show that:

1

n2

∑
i1 6=i2 6=i3 6=i4

E(A2
1C1,2C3,4)→ 0 (5.48)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(A1A2C1,2C3,4)→ 0 (5.49)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(A1C
2
1,2C3,4)→ 0 (5.50)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(A1C1,2C13C3,4)→ 0 (5.51)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(C2
1,2C2,3C3,4)→ 0 (5.52)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(C1,2C1,3C2,4C3,4)→ 0 (5.53)

1

n2

∑
i1 6=i2 6=i3 6=i4

E(C3
1,2C3,4)→ 0 (5.54)

We will develop the proof of Equation (5.49).
By exchangeability of the (Zi,k)1≤i≤n, we can write
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E[A1A2C1,2C3,4] =
∑
k,l,m,r

E[(Z2
1,k − 1)(Z2

2,l − 1)Z1,mZ2,mZ3,rZ4,r]

=
∑
k,l,m,r

E[Z2
1,kZ

2
2,lZ1,mZ2,mZ3,rZ4,r]− 2N

∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r]

+N2
∑
m,r

E[Z1,mZ2,mZ3,rZ4,r] (5.55)

We recall that since Zi,k and Zj,l are independent for any i and j when k 6= l, we will always
consider separately the cases where k = l from the cases k 6= l. Let us first focus on the last
term of (5.55).

∑
m,r

E[Z1,mZ2,mZ3,rZ4,r] =

N∑
m=1

E[Z1,mZ2,mZ3,mZ4,m] +
∑
m6=r

E[Z1,mZ2,m]E[Z3,rZ4,r]

= N ×O
(

1

n2

)
+N(N − 1)× 1

(n− 1)2

Then,
1
n2

1
N4

∑
i1 6=i2 6=i3 6=i4

(N2
∑
m,r

E[Z1,mZ2,mZ3,rZ4,r]) = (N−1)(n−2)(n−3)
Nn(n−1) + o(1)

Now let us decompose the second term of (5.55) as:

∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r] =

N∑
k=1

E[Z3
1,kZ2,kZ3,kZ4,k] +

∑
k 6=l

E[Z3
1,kZ2,k]E[Z3,lZ4,l]

+
∑
k 6=l

E[Z2
1,k]E[Z1,lZ2,lZ3,lZ4,l] +

∑
k 6=l

E[Z2
1,kZ3,kZ3,k]E[Z1,lZ2,l] +

∑
k 6=l 6=m

E[Z2
1,k]E[Z1,lZ2,l]E[Z3,mZ4,m]

Using the results given by Proposition 1, we obtain that

1

n2

1

N4

−2N
∑
k,m,r

E[Z2
1,kZ1,mZ2,mZ3,rZ4,r]

 = −2(N − 1)(n− 2)(n− 3)

Nn(n− 1)
+ o(1).

Similarly, we can prove that

1

n2

1

N4

 ∑
k,l,m,r

E[Z2
1,kZ

2
2,lZ1,mZ2,mZ3,rZ4,r]

 =
(N − 1)(n− 2)(n− 3)

Nn(n− 1)
+ o(1),

by using the properties of Proposition 1 or similar relationships coming from other properties
of Z that we have not detailed here.
Hence we have shown (5.49). The proofs of (5.48), (5.50), (5.51), (5.52), (5.53), (5.54) are very
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similar to this proof.
It remains to prove Proposition 4.
According to the expression of f2(w, x, y, z) given in (5.47) and since

|Σ|−
1
2 = 1− η?

2
√
N

(A1 +A2 +A3 +A4) +
η?2

4N
(A1A2 + · · ·+A3A4) +

3η?2

8N
(A2

1 +A2
2 +A2

3 +A2
4)

+
η?2

2N
(C2

1,2 + · · ·+ C2
3,4) +Op

(
1

N
3
2

)
,

the only term in C1,2C3,4 of P(Yi1 = Yi2 = Yi3 = Yi4 = 1|Z) is

1

(2π)2

η?2

N

∫ +∞

t

∫ +∞

t

∫ +∞

t

∫ +∞

t
wxyzφ(w)φ(x)φ(y)φ(z)C1,2C3,4dwdxdydz = φ(t)4C1,2C3,4

η?2

N
.

The term in C1,2C3,4 of P(“3 cases, 1 control”|Z) is

−4φ(t)4C1,2C3,4
η?2

N
.

The term in C1,2C3,4 of P(“2 cases, 2 controls”|Z) is

6φ(t)4C1,2C3,4
η?2

N
.

The term in C1,2C3,4 of P(“1 case, 3 controls”|Z) is

−4φ(t)4C1,2C3,4
η?2

N
.

The term in C1,2C3,4 of P(Yi1 = Yi2 = Yi3 = Yi4 = 0|Z) is

φ(t)4C1,2C3,4
η?2

N
.

It remains to compute the approximation of the denominator of E[Wi1Wi2Wi3Wi4 |Z] of order
0, that is

K4 + 4K3(1−K)

(
K(1− P )

P (1−K)

)
+ 6K2(1−K)2

(
K(1− P )

P (1−K)

)2

+ 4K(1−K)3

(
K(1− P )

P (1−K)

)3

+ (1−K)4

(
K(1− P )

P (1−K)

)4

=
K4

P 4

[
P 4 + 4P 3(1− P ) + 6P 2(1− P )2 + 4P (1− P )3 + (1− P )4

]
=
K4

P 4
.
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Finally, the term C1,2C3,4 in E[Wi1Wi2Wi3Wi4|Z] is

φ(t)4 η
?2

N
C1,2C3,4

[
(1− P )2

P 2
+ 2

1− P
P

(
K(1− P )

P (1−K)

)
+ 6

(
K(1− P )

P (1−K)

)2

+2
P

1− P

(
K(1− P )

P (1−K)

)3

+

(
K(1− P )

P (1−K)

)4
]
× P 4

K4

=
P 2(1− P )2

K4(1−K)4
φ(t)4 η

?2

N
C1,2C3,4,

which is exactly the term in C1,2C3,4 of E[Wi1Wi2 |Z]E[Wi3Wi4 |Z].
This proves Proposition 4.

5.8.3 Second order approximation of E[WiWj|Z, εi = εj = 1]

The density function f can still be written as

f(x, y) =
1

2π|Σ(N)|−
1
2

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η?√
N
AN (j)) + y2(1 +

η?√
N
AN (i))− 2xy

BN (i, j)√
N

]}
,

but with the explicit term of order 1/N in the expressions of |Σ(N)|−1 and |Σ(N)|−
1
2 :

|Σ(N)|−1 = 1− η?√
N

(AN (i) +AN (j)) +
η?2

N

(
−AN (i)AN (j) +BN (i, j)2 + (AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
= 1− η?√

N
(AN (i) +AN (j)) +

η?2

N

(
AN (i)AN (j) +AN (i)2 +AN (j)2 +BN (i, j)2

)
+Op

(
1

N
3
2

)
and

|Σ(N)|−
1
2 = 1− η?

2
√
N

(AN (i) +AN (j)) +
η?2

2N

(
−AN (i)AN (j) +BN (i, j)2 +

3

8
(AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
.
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Thus,

1

2π
exp

{
− 1

2|Σ(N)|

[
x2(1 +

η?√
N
AN (j)) + y2(1 +

η?√
N
AN (i))− 2xy

BN (i, j)√
N

]}
= φ(x)φ(y) exp

{
−x

2

2
(−AN (i)

η?√
N

+
η?2

N
(AN (i)2 +BN (i, j)2)

−y
2

2
(−AN (j)

η?√
N

+
η?2

N
(AN (j)2 +BN (i, j)2))

+xy(
η?√
N
BN (i, j)− η?2

N
BN (i, j)(AN (i) +AN (j)))

}
+Op

(
1

N
3
2

)
= φ(x)φ(y)

[
1 +

x2

2
(AN (i)

η?√
N
− η?2

N
(AN (i)2 +BN (i, j)2) +

y2

2
(AN (j)

η?√
N

− η?2

N
(AN (j)2 +BN (i, j)2)) +

x4

8

η?2

N
AN (i)2 +

y4

8

η?2

N
AN (j)2

+xy(
η?√
N
BN (i, j)− η?2

N
BN (i, j)(AN (i) +AN (j))) +

x2y2

2

η?2

N
BN (i, j)2 +Op

(
1

N
3
2

)]

with the last term obtained by developing the exponential function.
Since

∫ ∞
t

∫ ∞
t

x4dxdy = t3φ(t) + 3tφ(t) + 3K

and

∫ ∞
t

∫ ∞
t

x2y2dxdy = (tφ(t) +K)2

1

2π

∫ ∞
t

∫ ∞
t

exp

{
− 1

2|Σ(N)|

[
x2(1 +

η?√
N
AN (j)) + y2(1 +

η?√
N
AN (i))− 2xy

BN (i, j)√
N

]}
dxdy

= K2 +
K

2
(tφ(t) +K)

[
η?√
N

(AN (i) +AN (j))− η?2

N
(AN (i)2 +AN (j)2 + 2BN (i, j)2)

]
+
K

8

η?2

N
(t3φ(t) + 3tφ(t) + 3K)(AN (i)2 +AN (j)2) + φ(t)2

[
η?√
N
BN (i, j)− η?2

N
BN (i, j)(AN (i) +AN (j))

]
+

1

2
(tφ(t) +K)2 η

?2

N
(BN (i, j)2 +

AN (i)AN (j)

2
+
φ(t)2

2

η?2

N
(t2 + 2)BN (i, j)(AN (i) +AN (j)) +Op

(
1

N
3
2

)
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Multiplying by

|Σ(N)|−
1
2 = 1− η?

2
√
N

(AN (i) +AN (j)) +
η?2

2N

(
−AN (i)AN (j) +BN (i, j)2

+
3

4
(AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
,

we obtain

∫ ∞
t

∫ ∞
t

f(x, y)dxdy = K2 +
K

2
tφ(t)

η?√
N

(AN (i) +AN (j)) + φ(t)2 η?√
N
BN (i, j) +

K

8

η?2

N
(t3φ(t)− 3tφ(t))

+
η?2

N

t2φ(t)2

4
AN (i)AN (j) +

η?2

N
BN (i, j)2 t

2

2
φ(t)2

+
η?2

N

φ(t)2

2
(t2 − 1)BN (i, j)(AN (i) +AN (j))φ(t)2 +Op

(
1

N
3
2

)
.

Similarly,

∫ t

−∞

∫ t

−∞
x4dxdy = −t3φ(t)− 3tφ(t) + 3(1−K)

and

∫ t

−∞

∫ t

−∞
x2y2dxdy = (−tφ(t) + 1−K)2.

Then we have∫ t

−∞

∫ t

−∞
exp

{
− 1

2|Σ(N)|

[
x2(1 +

η?√
N
AN (j)) + y2(1 +

η?√
N
AN (i))− 2xy

BN (i, j)√
N

]}
dxdy

= (1−K)2 +
1−K

2
(−tφ(t) + 1−K)

[
η?√
N

(AN (i) +AN (j))− η?2

N
(AN (i)2 +AN (j)2 + 2BN (i, j)2)

]
+

1−K
8

η?2

N

(
−t3φ(t)− 3tφ(t) + 3(1−K)

)
(AN (i)2 +AN (j)2)

+
φ(t)2

2

η?2

N
(t2 + 2)BN (i, j)(AN (i) +AN (j))

Multiplying by

|Σ(N)|−
1
2 = 1− η?√

N
(AN (i) +AN (j)) +

η?2

2N

(
−AN (i)AN (j) +BN (i, j)2 +

3

4
(AN (i) +AN (j))2

)
+Op

(
1

N
3
2

)
,
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we obtain that∫ t

−∞

∫ t

−∞
f(x, y)dxdy = (1−K)2 − 1−K

2
tφ(t)

η?√
N

(AN (i) +AN (j)) + φ(t)2 η?√
N
BN (i, j)

+
1−K

8

η?2

N
(AN (i)2 +AN (j)2)(−t3φ(t) + 3tφ(t)) +

η?2

N

t2φ(t)2

4
AN (i)AN (j)

+
η?2

N
BN (i, j)2 t

2

2
φ(t)2 − η?2

N
BN (i, j)(AN (i) +AN (j))

φ(t)2

2
(t2 − 1) +Op

(
1

N
3
2

)
.

Finally, we compute similarly P(Yi 6= Yj |Z) =
∫ t
−∞

∫ +∞
t f(x, y)dxdy +

∫ +∞
t

∫ t
−∞ f(x, y)dxdy.

We obtain

P(Yi 6= Yj |Z) = 2K(1−K)− 1− 2K

2
tφ(t)

η?√
N

(AN (i) +AN (j))− 2φ(t)2 η?√
N
BN (i, j)

+
1− 2K

8

η?2

N
(AN (i)2 +AN (j)2)(t3φ(t)− 3tφ(t))− η?2

N

t2φ(t)2

2
AN (i)AN (j)

− η?2

N
BN (i, j)2t2φ(t)2 +

η?2

N
BN (i, j)(AN (i) +AN (j))φ(t)2(−t2 + 1) +Op

(
1

N
3
2

)

We replace the expressions of P(Yi = Yj = 1|Z), P(Yi = Yj = 0|Z) and P(Yi 6= Yj |Z) in the
expression of E(WiWj |Z, εi = εj = 1). Since we already computed the terms of order 1√

N
for

the numerator, it only remains the terms of order 1
N .

Eventually, we find that the numerator can be writen as :

η?√
N

1− P
P (1−K)2

φ(t)2BN (i, j) +
η?2

N

t2φ(t)2

4
AN (i)AN (j)

1− P
P (1−K)2

+
η?2

2N
BN (i, j)2 1− P

P (1−K)2
t2φ(t)2

+
η?2

N

φ(t)2

2

1− P
P (1−K)2

(t2 − 1)BN (i, j)(AN (i) +AN (j)) +Op

(
1

N
3
2

)
Similarly, we compute the expression of the denominator (at order 1√

N
since the main term

of the numerator is of order 1√
N

). We obtain the following expression:

K2

P 2
+

η?√
N

t

2
φ(t)(AN (i) +AN (j))

K(P −K)

P 2(1−K)
+

η?√
N
φ(t)2BN (i, j)

(P −K)2

P 2(1−K)2
+Op

(
1

N

)
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E(WiWj |Z, εi = εj = 1)

=
P 2

K2

[
1− η?√

N

t

2
φ(t)(AN (i) +AN (j))

(P −K)

K(1−K)
− η?√

N
φ(t)2BN (i, j)

(P −K)2

K2(1−K)2

]
×
[
η?√
N

1− P
P (1−K)2

φ(t)2BN (i, j) +
η?2

N

t2φ(t)2

4
AN (i)AN (j)

1− P
P (1−K)2

+
η?2

2N
BN (i, j)2 1− P

P (1−K)2
t2φ(t)2 − η?2

N

φ(t)2

2

1− P
P (1−K)2

(t2 − 1)BN (i, j)(AN (i) +AN (j))

]
+Op

(
1

N
3
2

)
=

η?√
N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j) +

t2

4

η?2

N
AN (i)AN (j)

P (1− P )

K2(1−K)2

+
η?2

N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)2

[
t2

2
− (P −K)2

K2(1−K)2

]
+
η?2

2N

P (1− P )

K2(1−K)2
φ(t)2BN (i, j)(AN (i) +AN (j))

[
t2 − 1− P −K

K(1−K)
tφ(t)

]
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Appendix

5.A Proof of Equation (5.13)

By definition, the probabilities pcase and pcontrol are linked to the variables εi as follows:

pcase = P(εi = 1|Z,Yi = 1)

and

pcontrol = P(εi = 1|Z,Yi = 0).

The ratio of the two following equations:

P = P(Yi = 1|εi = 1) =
P(Yi = 1, εi = 1)

P(εi = 1)
=

P(Yi = 1, Vi = 1)

P(εi = 1)
=

Kpcase
P(εi = 1)

and

1− P = P(Yi = 0|εi = 1) =
P(Yi = 0, εi = 1)

P(εi = 1)
=

P(Yi = 0, Ui = 1)

P(εi = 1)
=

(1−K)pcontrol
P(εi = 1)

,

with the full ascertainment assumption given by (5.12) prove equation (5.13).

5.B Proof of Equation (5.15)

This equation was proved in Golan et al. (2014), we recall the proof here for the sake of com-
pleteness.
Conditionally to the event {εi = εj = 1}, the variable WiWj can take the following values:
• 1−p

p if Yi = Yj = 1.

• p
1−p if Yi = Yj = 0.
• −1 if Yi 6= Yj .

Let us write the expectaction of WiWj conditionally to Z and conditionally to {εi = εj = 1}:

E(WiWj |Z, εi = εj = 1) =
1− P
P

P(Yi = Yj = 1|Z, εi = εj = 1)− P(Yi 6= Yj |Z, εi = εj = 1)

+
P

1− P
P(Yi = Yj = 0|Z, εi = εj = 1). (5.56)
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P(Yi = Yj = 1|Z, εi = εj = 1) =
P(εi = εj = 1|Yi = Yj = 1,Z)P(Yi = Yj = 1|Z)

P(εi = εj = 1|Z)

=
P(Yi = Yj = 1|Z)

P(εi = εj = 1|Z)

under the full ascertainment assumption given by Equation (5.12).

Similarly, since we have seen in Equation (5.13) that a control has a probability K(1−P )
P (1−K) to

be selected in the study and since εi and εj are assumed to be independent conditionally to Z,
Yi and Yj :

P(Yi = Yj = 0|Z, εi = εj = 1) =
P(εi = εj = 1|Yi = Yj = 0,Z)P(Yi = Yj = 0|Z)

P(εi = εj = 1|Z)

=

(
K(1− P )

P (1−K)

)2 P(Yi = Yj = 1|Z)

P(εi = εj = 1|Z)

and

P(Yi 6= Yj |Z, εi = εj = 1) =
P(εi = εj = 1|Yi 6= Yj ,Z)P(Yi 6= Yj |Z)

P(εi = εj = 1|Z)

=

(
K(1− P )

P (1−K)

)
P(Yi 6= Yj |Z)

P(εi = εj = 1|Z)
.

The probability that both individuals i and j are included in the study is equal to

P(εi = εj = 1|Z) = P(εi = εj = 1|Z,Yi = Yj = 1)P(Yi = Yj = 1|Z)

+ P(εi = εj = 1|Z,Yi = Yj = 0)P(Yi = Yj = 0|Z)

+ P(εi = εj = 1|Z,Yi 6= Yj)P(Yi 6= Yj |Z)

= P(Yi = Yj = 1|Z) +

(
K(1− P )

P (1−K)

)2

P(Yi = Yj = 0|Z) +

(
K(1− P )

P (1−K)

)
P(Yi 6= Yj |Z).

If we combine all these computations and we plug them in the expression (5.56), we obtain
(5.15).

5.C Proof of Equation (5.19)

Notice first that

GN (i, i)− 1 =
1√
N

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)
with

Var

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)
=

1

N

N∑
k=1

E(Z4
i,k)− (E(Z2

i,k))
2.

Moreover, since the variables (Zi,k)1≤i≤n are normalized according to Equation (5.9),
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N∑
i=1

Z2
i,k = n.

By taking the expectation and since the variables (Zi,k)1≤i≤n are exchangeable, we obtain
that

E[Z2
i,k] = 1. (5.57)

Using (2) of Proposition 1 and Equation (5.57), we obtain that

Var

(
1√
N

N∑
k=1

(Z2
i,k − 1)

)

is bounded and

GN (i, i)− 1 =
1

N

N∑
k=1

(Z2
i,k − 1) = Op

(
1√
N

)
.

Similarly,

Var

(
1√
N

N∑
k=1

Zi,kZj,k

)
=

1

N

N∑
k=1

E(Z2
i,kZ

2
j,k)− E(Zi,kZj,k)

2

=
1

N

N∑
k=1

(
1 + o(1)− 1

(n− 1)2

)
using (3) and (1) of Proposition 1

= 1 + o(1).

Then, 1
N

N∑
k=1

Zi,kZj,k = Op

(
1√
N

)
.

Thus, we can write

Σ(N) =

(
1 + AN (i)√

N
η? BN (i,j)√

N
η?

BN (i,j)√
N

η? 1 + AN (j)√
N
η?

)
,

where AN (i) = 1√
N

N∑
k=1

(Z2
i,k − 1) = Op(1) for all i,

and BN (i, j) = 1√
N

N∑
k=1

Zi,kZj,k = Op(1) for all i 6= j.

5.D Proof of Proposition 1

Observe that for all k = 1, . . . , N ,
n∑
i=1

Zi,k = 0 (5.58)
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and
n∑
i=1

Z2
i,k = n. (5.59)

Moreover, for each k, the random variables (Zi,k)1≤i≤n are exchangeable. Thus, we deduce from
(5.59) that for all i = 1, . . . , n and k = 1, . . . , N , E(Z2

i,k) = 1. Hence, by (5.58), we get that

0 =

(
n∑
i=1

Zi,k

)2

=
n∑
i=1

Z2
i,k +

∑
1≤i 6=j≤n

Zi,kZj,k ,

which, by (5.59), implies that for all k = 1, . . . , N and i 6= j = 1, . . . , n,

E(Zi,kZj,k) = − n

n(n− 1)
= − 1

n− 1
, (5.60)

that is (1).
The proof of (2) comes from the decomposition:

|Z1,k|p = |Z1,k|p1{s2k> δmin
2
} + |Z1,k|p1{s2k≤ δmin2

}

≤
|A1,k − Āk|p(

δmin
2

)p + np1{s2k≤
δmin

2
}

Assumption 1.2 implies that sup
k

E
[
|A1,k − Āk|p

]
< +∞ and the upper bound for P(s2

k ≤ δ) of

Equation (5.34) prove (2).
By (5.59), for all k = 1, . . . , N ,

n2 =

(
n∑
i=1

Z2
i,k

)2

=
n∑
i=1

Z4
i,k +

∑
1≤i 6=j≤n

Z2
i,kZ

2
j,k

Since the (Zi,k)1≤i≤n are exchangeable for each k = 1, . . . , N , we get that for all k = 1, . . . , N ,

n = E[Z4
1,k] + (n− 1)E[Z2

1,kZ
2
2,k] ,

which gives us (3) by using (2).
If we take the expectation of

Z3
1,k

n∑
i=1

Zi,k = 0,

we obtain
E[Z4

1,k] + (n− 1)E[Z3
1,kZ2,k] = 0.

Then, (2) implies (4).
Similarly, since

Z1,kZ2,k

n∑
i=1

Z2
i,k = nZ1,kZ2,k,
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we obtain that

2E[Z3
1,kZ2,k] + (n− 2)E[Z2

1,kZ2,kZ3,k] = nE[Z1,kZ2,k].

Then (1) and (4) imply (5).
Since

Z1,kZ2,kZ3,k

n∑
i=1

Zi,k = 0,

we obtain that

3E[Z2
1,kZ2,kZ3,k] + (n− 3)E[Z1,kZ2,kZ3,kZ4,k] = 0.

Then, (5) implies (6).
Since

Z5
1,k

n∑
i=1

Zi,k = 0,

we obtain that
Then, (2) implies (7).

The proof of (8) is very similar to the proof of (2) but we use Assumption 1.3 which gives us
that sup

k
E
[
|(A1,k − Āk)(A2,k − Āk)|p

]
< +∞.

Since

Z4
1,k

n∑
i=1

Z2
i,k = nZ4

1,k,

E[Z6
1,k] + (n− 1)E[Z4

1,kZ
2
2,k] = nE[Z4

1,k].

Then (2) implies (9).
Similarly, since

Z4
1,kZ2,k

n∑
i=1

Zi,k = 0,

we obtain that

E[Z5
1,kZ2,k] + E[Z4

1,kZ
2
2,k] + (n− 2)E[Z4

1,kZ2,kZ3,k] = 0.

Then, (7) and (9) imply (10).
Since

Z3
1,kZ2,k

n∑
i=1

Z2
i,k = nZ3

1,kZ2,k,

we obtain that

E[Z5
1,kZ2,k] + E[Z3

1,kZ
3
2,k] + (n− 2)E[Z3

1,kZ
2
2,kZ3,k] = nE[Z3

1,kZ2,k].
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Then, (7), (8) and (4) imply (11).

Finally, since Z3
1,kZ2,k(

n∑
i=1

Zi,k)
2 = 0,

E[Z5
1,kZ2,k] + E[Z3

1,kZ
3
2,k] + 2E[Z4

1,kZ
2
2,k] + 2(n− 2)E[Z4

1,kZ2,kZ3,k]

+ 2(n− 2)E[Z3
1,kZ

2
2,kZ3,k] + (n− 2)2E[Z3

1,kZ2,kZ3,kZ4,k] = 0

Then, (7), (8), (9), (10) and (11) imply (12).
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6.1 Contexte biologique

Tous les caractères biologiques, par exemple la taille ou le poids, sont influencés à la fois par des
facteurs génétiques et environnementaux. Quantifier ces deux contributions pour un trait donné
est une problématique difficile et fondamentale en biologie. Le concept d’héritabilité désigne la
part de la variabilité d’un trait observé (ou phénotype) qui peut être attribuée à des causes
génétiques.

Plusieurs erreurs concernant l’héritabilité sont dues à l’utilisation du terme dans le langage
commun, mais avec un sens différent du terme technique utilisé en génétique. Par exemple, une
idée reçue serait de penser que l’héritabilité définit la proportion d’un phénotype qui est transmis
des parents aux enfants. Tout d’abord, ce ne sont pas les phénotypes qui sont transmis d’une
génération à l’autre mais les gènes. De plus, si la moitié des effets génétiques sont effectivement
transmis par chaque parent, cette moitié est spécifique à chaque enfant.Visscher et al. (2008) a
regroupé ces fréquentes erreurs et idées reçues concernant l’héritabilité. Nous allons à présent
détailler le concept d’héritabilité tel qu’il est utilisé dans le domaine de la génétique.

6.1.1 Définition de l’héritabilité

En reprenant les explications élégantes de Visscher et al. (2008), nous considérons la modélisation
simple où un phénotype d’intérêt est décrit comme le résultat d’effets génétiques et environne-
mentaux, considérés comme indépendants :

Phénotype (P) = Génotype (G) + Environnement (E).

La variance phénotypique (σ2
P ) peut être décomposée comme la somme des variances non

observées (σ2
G et σ2

E) :

σ2
P = σ2

G + σ2
E .

L’héritabilité (H2) est définie mathématiquement comme un rapport de variances et exprime
la proportion de la variance phénotypique qui peut être attribuée à des facteurs génétiques :
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H2 =
σ2
G

σ2
P

.

La variabilité génétique peut être partitionnée selon différentes sources, en particulier, la
variance σ2

A des effets génétiques additifs. Ces effets additifs sont caractérisés par l’impact des
polymorphismes de nucléotide simple (SNPs), qui sont des différences de la séquence d’ADN
aux positions du génome auxquelles il existe une variabilité relativement importante dans la
population. Ces positions sont en réalité peu fréquentes par rapport à l’intégralité du génome
qui contient environ 3 milliards de paires de bases, parmi lesquelles la grande majorité est
identique chez tous les êtres humains.

Dans la suite, nous allons considérer l’héritabilité “au sens strict”, c’est-à-dire la propor-
tion de variabilité expliquée seulement par les effets génétiques additifs, définie par l’expression
suivante :

h2 =
σ2
A

σ2
P

.

Comme l’accès au génotype de milliers d’individus a été rendu possible par la spectaculaire
diminution des coûts du séquençage de l’ADN, l’héritabilité de traits quantitatifs ainsi que de
pathologies est devenu un sujet très étudié. Yang et al. (2010) a par exemple estimé que, chez les
humains, environ 45 % des variations de la taille sont expliquées par les SNPs les plus fréquents.

6.1.2 L’héritabilité en génétique humaine

Nous présentons à présent l’intérêt d’estimer l’héritabilité de caractères humains. C’est en effet
un premier pas vers la compréhension de maladies complexes, qui ont souvent des causes mul-
tiples. Nous faisons référence en particulier à des maladies qui ne sont pas causées par un seul
gène affecté mais dont on soupçonne néanmoins qu’elles ont une composante génétique impor-
tante, probablement répartie sur plusieurs gènes. Par exemple, les causes de certaines maladies
psychiatriques comme l’autisme et la schizophrénie sont encore vagues aujourd’hui. Une compo-
sante génétique est suggérée par les résultats des études de jumeaux monozygotes et dizygotes
(les jumeaux monozygotes ont des génomes identiques alors que les jumeaux dizygotes ont en-
viron 50% de leurs génomes en commun). Ces études montrent que si l’un des jumeaux souffre
de troubles autistiques, l’autre également dans 82 à 92 % des cas pour les jumeaux monozy-
gotes (Bailey et al. (1995)) contre 20 % des cas chez les jumeaux dizygotes (Hallmayer et al.,
2011). Ces études décrivent l’autisme comme la maladie psychiatrique avec la plus importante
composante génétique. Cependant, la sévérité des traits autistiques (troubles des interactions et
du langage, handicap mental...) peuvent varier fortement chez deux patients qui présentent des
causes similaires, par exemple la même mutation. Ces observations laissent penser, comme c’est
le cas pour d’autres maladies génétiques, que le fond génétique module les effets d’une mutation
et rend certains individus plus ou moins sensibles au développement de traits autistiques.

De plus, toutes ces études montrent que, malgré des patrimoines génétiques identiques, la
concordance des symptômes chez les jumeaux monozygotes n’est jamais totale, ce qui confirme
une composante épigénétique et/ou environnementale. Néanmoins, quantifier ces possibles causes
et leurs interactions potentielles reste une question difficile.
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La mise en évidence d’une composante génétique importante d’une maladie est également un
argument puissant pour réfuter des croyances populaires quant aux causes de certaines maladies.
Par exemple, une vague de mouvements anti-vaccins a été déclenchée par un lien présumé entre
le vaccin contre l’hépatite B et la sclérose en plaques. De même, le vaccin contre la rougeole a
été accusé de provoquer des cas d’autisme (Uno et al., 2012).

Bien qu’aucun lien n’ait jamais été démontré (Poland & Jacobson, 2001), les conséquences du
refus de nombreux parents de vacciner leurs enfants reste un problème de santé publique majeur.
En effet, une étude récente (Uno et al., 2012) a montré que plus de 25 % des parents américains
avaient refusé de vacciner leurs enfants contre des maladies mortelles comme la rougeole. Quant
à d’autres causes présumées de l’autisme, la théorie de la “mère réfrigérateur” a été formulée
par le psychiatre Leo Kanner dans les années 1940 car il avait observé un manque d’affection
maternelle chez les mères de ses patients. Bien que cette théorie ait largement été discréditée
depuis, les mères de patients autistes ont souffert d’accusations sévères et injustifiées pendant
plusieurs décennies.

6.1.3 L’héritabilité en génétique animale et végétale

En génétique animale ou végétale, l’estimation de l’héritabilité est souvent la première étape
de la sélection de traits d’intérêt, généralement liés au rendement d’une ressource précieuse.
Nous pouvons par exemple citer les exemples d’optimisation de production du lait (Visscher
& Goddard, 1995) ou du blé (Eid, 2009). Le but de Eid (2009) est de déterminer des traits
héritables liés au rendement du blé et ensuite d’obtenir un génotype optimal. Un tel génotype
peut même être choisi pour être le plus résistant possible à des conditions environnementales
extrêmes, comme l’absence d’eau, ce qui est actuellement un problème fondamental.

Si ces pratiques sont généralement bien acceptées dans le cadre de la génétique animale,
elles ouvrent une controverse quant à de possibles conséquences de l’estimation de l’héritabilité
de traits humains. En effet, plusieurs études ont estimé l’héritabilité du QI, par exemple (Toro
et al., 2015), et Davies et al. (2011) a même annoncé que l’intelligence humaine était fortement
héritable. La controverse relative à l’héritabilité du QI est discutée dans Visscher et al. (2008),
qui énumère des raisons à cette polémique. Ces raisons vont de la très controversée définition du
QI en tant que mesure de l’intelligence jusqu’à des abus historiques liés à l’eugénisme. Nous ne
discuterons pas plus en détail cette polémique ici, mais nous la mentionnant pour illustrer des
fréquentes réactions quand on travaille sur l’héritabilité de traits humains.

Après avoir brièvement argumenté en faveur de l’intérêt général d’estimer l’héritabilité, nous
allons à présent introduire les modèles statistiques utilisés pour fournir ces estimations.

6.2 Estimation de l’héritabilité dans les modèles linéaires mixtes

6.2.1 Etat de l’art

Les modèles linéaires mixtes (LMMs) sont utilisés dans de nombreux domaines, en particulier
en médecine et en génétique. Yang et al. (2010) ont notamment proposé d’estimer l’héritabilité
de la taille humaine en utilisant un modèle linéaire mixte classique défini comme suit :

Y = Xβ + Zu + e (6.1)
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où Y = (Y1, . . . , Yn)′ est le vecteur d’observations d’un phénotype d’intérêt, X est une
matrice de taille n×p de prédicteurs, β est un vecteur de taille p×1 qui contient l’effet inconnu
des prédicteurs (aussi appelés effets fixes), et u et e correspondent à des effets aléatoires gaussiens
de variances respectives σ?2u et σ?2e .

De plus, Z est une matrice de taille n × N qui contient l’information génétique. Plus
précisément, les Zi,j sont variables aléatoires normalisées au sens où elles sont définies à partir
d’une matrice W = (Wi,j)1≤i≤n, 1≤j≤N par la relation

Zi,j =
Wi,j −W j

sj
, i = 1, . . . , n, j = 1, . . . , N , (6.2)

où

W j =
1

n

n∑
i=1

Wi,j , s
2
j =

1

n

n∑
i=1

(Wi,j −W j)
2, j = 1, . . . , N . (6.3)

Dans les équations (6.2) et (6.3), les Wi,j sont de telle sorte que pour chaque j dans {1, . . . , N}
les (Wi,j)1≤i≤n sont des variables aléatoires indépendantes et identiquement distribuées et les
colonnes de W sont indépendantes.

Dans les applications en génétique, la matrice W contient l’information génétique des tous les
individus étudiés. Plus précisément, pour chaque j, les (Wi,j)1≤i≤n sont des variables binomiales
i.i.d de paramètres 2 et pj : Wi,j = 0 (resp. 1, resp. 2) si le génotype de l’individu i au locus j
est qq (resp. Qq, resp. QQ) où pj est la fréquence de l’allèle Q au locus j.

Avec cette définition, les colonnes de Z sont empiriquement centrées et de variance empirique
égale à 1.

Le modèle linéaire mixte apparâıt comme un choix intuitif de modèle pour décrire le concept
d’héritabilité en tant que ratio des variances génétique et phénotypique. Yang et al. (2010) et
Pirinen et al. (2013) proposent d’estimer le paramètre

η? =
Nσ?2u

Nσ?2u + σ?2e
, (6.4)

communément considéré comme la définition mathématique de l’héritabilité puisqu’il détermine
comment les variances sont réparties entre u et e.

Dans le modèle (6.1), la log-vraisemblance conditionnellement à Z est donnée par la formule :

L(β, σ2
u, σ

2
e) = −n

2
log(2π)− 1

2
log(|ZZ′σ2

u+σ2
e IdRn |−

1

2
(Y−Xβ)′(ZZ′σ2

u+σ2
e IdRn)−1(Y−Xβ).

(6.5)
Searle et al. (1992) ont regroupé de nombreuses techniques d’optimisation pour estimer les

paramètres β, σ?2u et σ?2e , parmi lesquelles nous pouvons citer les équations d’Henderson ou bien
des méthodes itératives comme Fisher-Scoring et Newton-Raphson.

Une idée naturelle pour estimer l’héritabilité est d’estimer les paramètres de variances σ?2u
et σ?2e afin d’obtenir un estimateur de η? en tant que ratio :

Nσ̂u
2/(Nσ̂u

2 + σ̂e
2).
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Pirinen et al. (2013) ont remarqué que le modèle défini par l’équation (6.1) peut être repa-
ramétrisé en fonction de β, η? et σ?2 = Nσ?2u + σ?2e . Plus précisément,

Y ∼ N
(
Xβ, η?σ?2R + (1− η?)σ?2IdRn

)
,

où R = ZZ′/N .
Si l’on note U la matrice orthogonale (U′U = UU′ = IdRn) telle que URU′ = diag(λ1, . . . , λn)

est une matrice diagonale dont les entrées diagonales sont égales à λ1, . . . , λn. Alors Ỹ =
U′Y est un vecteur gaussien centré de matrice de variance covariance diag(η?σ?2λ1 + (1 −
η?)σ?2, . . . , η?σ?2λn + (1 − η?)σ?2), où les λi sont les valeurs propres de R. Notons également
X̃ = U′X. Finalement, Pirinen et al. (2013) ont maximisé la log-vraisemblance suivante :

Ln(β, σ2, η) = −n
2

log(σ2)− 1

2

n∑
i=1

log(η(λi− 1) + 1)− 1

2σ2

n∑
i=1

(Ỹi − X̃β)2

η(λi − 1) + 1
− n

2
log(2π), (6.6)

où Ỹ = (Ỹ1, ..., Ỹn).
Les méthodes présentées précédemment ont deux possibles faiblesses dans les applications

qui nous intéressent. Tout d’abord, elles ont été validées théoriquement uniquement dans le
cadre où N est fixé et n tend vers l’infini. En effet, des résultats classiques du modèle linéaire
mixte permettent d’obtenir des résultats de consistance et de normalité asymptotiques pour
l’estimateur du maximum de vraisemblance. Cependant, puisqu’en pratique le nombre N de
SNPs est largement supérieur au nombre n d’individus, il serait plus adapté de valider ces
méthodes dans le cadre où n et N tendent vers l’infini, avec n/N qui tend vers une constante a
dans (0,+∞).

De plus, toutes ces méthodes ont été développées dans le cas d’effets aléatoires gaussiens,
ce qui impliquerait que toute l’information génétique disponible ait un impact sur le phénotype
observé. Cette hypothèse, qui semble assez improbable, a été discutée en particulier par Jiang
et al. (2014), qui ont étudié les conséquences d’une modélisation qui ne prend pas en compte le
fait que les effets de certains SNPs (possiblement nombreux) soient nuls.

Nous avons pour l’instant mentionné uniquement les méthodes d’estimation de l’héritabilité
dans les modèles linéaires mixtes, mais il existe d’autres façons de définir et d’estimer l’héritabilité.
En effet, d’importants résultats théoriques ont été prouvés dans le cas du modèle linéaire

Y = Xβ + ε (6.7)

où la composante aléatoire vient d’une part de l’erreur résiduelle ε, supposée gaussienne
centrée et de variance σ2

ε mais aussi de la matrice de SNPs X dont les colonnes sont supposées
gaussiennes centrées réduites indépendantes. Dans ce modèle, l’héritabilité est définie comme le
ratio

η? =
||β||22

σ2
ε + ||β||22

. (6.8)

Un avantage de ce modèle est qu’il n’y a pas d’hypothèse sur la distribution de β, en par-
ticulier sur sa parcimonie. Néanmoins, des hypothèses fortes sont requises sur la structure de
la matrice X. Plusieurs méthodes ont été proposées pour estimer l’héritabilité dans le modèle
(6.7). Dicker (2014) a proposé un estimateur de moments qui est asymptotiquement normal
quand n,N → a ∈ (0,+∞). Janson et al. (2015) ont développé la procédure Eigenprism pour
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construire des intervalles de confiance pour η? pour des échantillons finis et dont ils ont également
étudié les propriétés asymptotiques quand n,N → a ∈ (0,+∞). Dicker & Erdogdu (2016) ont
étudié les propriétés de l’estimateur du maximum de vraisemblance et ont mené une étude de
simulation qui compare les méthodes précédemment citées et qui a montré que l’estimateur du
maximum de vraisemblance a une variance empirique plus petite que les deux autres approches.
Dicker & Erdogdu (2016) ont également montré la consistance et la normalité asymptotique de
l’estimateur du maximum de vraisemblance et ont calculé une formule explicite de la variance
asymptotique.

Toujours dans le modèle linéaire, Verzelen & Gassiat (2016) ont étudié l’optimalité de
différentes procédures selon la parcimonie des effets aléatoires. En effet, Verzelen & Gassiat
(2016) ont comparé les performances d’une approche avec sélection (estimateur Gauss-LASSO)
et sans sélection (estimateur dense) dans différents régimes de parcimonie. Ils ont distingué des
gammes de valeurs pour la parcimonie et pour chacune, ont évalué le risque minimax : ils ont
montré que la meilleure procédure était un estimateur adaptatif qui se comporte comme l’esti-
mateur Gauss-LASSO dans les cas très parcimonieux et comme l’estimateur dense dans les cas
peu parcimonieux

6.2.2 Contribution

Notre première contribution a été de proposer un estimateur de l’héritabilité dans le contexte où
n et N tendent vers l’infini, avec n/N qui tend vers a dans (0,+∞), et d’en établir les propriétés
théoriques. Ce travail est développé dans le chapitre 2 de ce manuscrit et a fait l’objet d’un
article publié dans Electronic Journal of Statistics. Nous avons étudié le modèle défini par (6.1)
sauf que nous avons supposé que les effets aléatoires pouvaient être parcimonieux, c’est-à-dire
que seulement une proportion q des composantes de u étaient non nulles :

ui
i.i.d.∼ (1− q)δ0 + qN (0, σ?u

2) ,pour tous 1 ≤ i ≤ N et e ∼ N
(

0, σ?e
2IdRn

)
, (6.9)

où IdRn est la matrice identité de taille n× n, q est dans (0, 1], et δ0 la masse de Dirac en 0.
Quitte à considérer la projection de Y sur l’orthogonal de l’image de X et pour simplifier

les calculs, nous avons étudié le modèle suivant

Y = Zu + e . (6.10)

De plus, comme dans notre cas nous nous intéressons uniquement à l’estimation de η?, nous
avons remplacé σ?2 par son estimateur

σ̂2 =
1

n

n∑
i=1

Ỹi
2

η(λi − 1) + 1
.

Nous avons implémenté un estimateur de η? comme le maximiseur de la fonction de vrai-
semblance dépendant uniquement du paramètre η :

Ln(η) = − log

(
1

n

n∑
i=1

Ỹ 2
i

η(λi − 1) + 1

)
− 1

n

n∑
i=1

log (η(λi − 1) + 1) , (6.11)
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Nous avons obtenu deux résultats principaux dans le cadre où n et N tendent vers l’infini,
avec n/N qui tend vers a dans (0, 1) : premièrement, nous avons prouvé que notre estimateur était√
n-consistant malgré la présence de composantes nulles dans les effets aléatoires. Ce résultat a

été obtenu sous de faibles hypothèses sur la matrice W et pour toute valeur de parcimonie q.
Nous avons ensuite établi un théorème de la limite centrale sous l’hypothèse supplémentaire

que pour tous i et j, les Zi,j étaient des variables gaussiennes centrées réduites et indépendantes.
Nous avons calculé une formule explicite de la variance asymptotique, donnée par

τ2(a, η?, q) =
2

γ2(a, η?)
+ 3

a2η?2

γ4(a, η?)

(
1

q
− 1

)
S(a, η?) (6.12)

où

γ2(a, η?) =

{∫
g(η, λ)2dµa(λ)−

(∫
g(η, λ)dµa(λ)

)2
}

et

S(a, η?) =

[∫
λ(λ− 1)

(η?(λ− 1) + 1)2
dµa(λ)−

∫
λ

(η?(λ− 1) + 1)
dµa(λ)

∫
λ− 1

(η?(λ− 1) + 1)
dµa(λ)

]2

.

Dans l’expression précédente, dµa(λ) est la densité de Marchenko-Pastur, qui est la distribu-
tion des valeurs propres de ZZ′/N . Cette distribution, obtenue par Marchenko & Pastur (1968)
a été un élément clef pour établir les preuves de nos résultats. Nous avons implémenté notre
approche dans le package R HiLMM, disponible sur le CRAN.

Nous avons également mené une étude de simulation sur des échantillons finis dont les tailles
correspondent à des cas réalistes en pratiques. Nous avons montré que, bien que la variance
asymptotique définie par la formule (6.12) dépende en théorie de la parcimonie q, son influence
était à peine remarquable en pratique. Par contre, nous avons observé que la variance de notre
estimateur était influencée par la paramètre a = n/N . Plus précisément, quand le nombre
d’observations est très petit comparé à la taille des effets aléatoires (ce qui est très souvent
le cas dans les études en génétique), la variance de l’estimateur était très grande. Ce constat
numérique a motivé l’idée de développer une méthode de sélection de variables afin de réduire
la taille des effets aléatoires et d’améliorer la précision des estimations de l’héritabilité.

6.3 Sélection de variables dans les effets aléatoires des modèles
linéaires mixtes

Suite aux performances numériques de notre estimateur de l’héritabilité présentées dans la sec-
tion précédente, nous avons décidé d’inclure une étape de sélection de variables à notre méthode.
Le but de cette étape serait de retrouver le support des effets aléatoires, qui correspond en pra-
tique aux SNPs impliqués dans les variations du phénotype observé. Nous considérerions ensuite
la matrice de SNPs réduite à ces SNPs sélectionnés et nous estimerions l’héritabilité avec un er-
reur standard plus petite que celle nous aurions obtenue en utilisant la matrice de SNPs entière.
Nous allons dans un premier temps présenter les méthodes et les résultats qui existent sur la
sélection de variables dans les effets fixes des modèles linéaires mixtes parcimonieux.
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6.3.1 Etat de l’art

Bien que la littérature concernant la sélection de variable dans les modèles linéaires mixtes
soit moins riche que celle sur les modèles linéaires, plusieurs méthodes ont été proposées pour
sélectionner des variables dans la partie des effets fixes et des effets aléatoires.

Pour ce qui est de la sélection dans les effets fixes, nous renvoyons le lecteur à la revue
proposée par Müller et al. (2013). Concernant la sélection dans les effets aléatoires, nous avons
connaissance du travail de Fan & Li (2012) and Bondell et al. (2010). Bondell et al. (2010) ont
proposé une méthode basée sur un algorithme EM pour sélectionner conjointement des effets
fixes et aléatoires. Fan & Li (2012) ont utilisé un critère pénalisé avec une pénalité particulière,
appelée SCAD (Smoothly Clipped Absolute Deviation), qui combine des pénalités `1 et `2. Ces
deux méthodes peuvent demander des temps de calcul important en grande dimension, pour
l’une à cause de l’algorithme EM et pour l’autre à cause de la validation croisée nécessaire au
choix des deux paramètre de régularisation.

La sélection de variable dans des cadres de très grande dimension comme ceux auxquels nous
nous intéressons est un problème difficile, comme montré par Verzelen (2012) qui a étudié le cas
du modèle linéaire défini par l’équation (6.7). Verzelen (2012) a en effet établi que si la condition
Nq log(1/q) >> n était vérifiée, ce qui est le cas notamment si le nombre de SNPs causaux
(nombre de composantes non nulles dans les effets aléatoires) est grand par rapport au nombre
d’individus, le support ne peut pas être entièrement retrouvé.

Concernant l’estimation de l’héritabilité, l’idée d’introduire une étape de sélection de variable
au préalable a été proposée par Guan & Stephens (2011) dans le cadre Bayésien. Guan &
Stephens (2011) ont en effet proposé une approche, appelée BVSR (Bayesian Variable Selection
Regression), qui est très efficace dans des cas où les effets aléatoires sont très parcimonieux
mais qui est biaisé quand le nombre de SNPs causaux est élevé. Zhou et al. (2013) ont ensuite
proposé une approche, appelée BSLMM (Bayesian Sparse Linear Mixed Model), définie comme
un estimateur hybride qui a un comportement proche de BVSR dans les cas très parcimonieux
et comme l’estimateur du maximum de vraisemblance (sans sélection) sinon.

Ces résultats numériques obtenus par Zhou et al. (2013) rejoignent les résultats théoriques
obtenus par Verzelen & Gassiat (2016) avec leur procédure adaptative optimale dans le cas du
modèle linéaire décrit dans la section 6.2.1.

6.3.2 Contribution

Méthodologie

Nous avons proposé une méthode de sélection de variables dans le but d’améliorer la précision de
l’estimation de l’héritabilité. Ce travail a fait l’objet d’un article soumis à la publication et qui
est décrit dans le chapitre 3 de ce manuscrit. Notre méthode est implémentée dans le package
R EstHer, disponible sur le CRAN.

Notre approche présente deux caractéristiques principales : premièrement, elle est très efficace
d’un point de vue statistique car elle permet de réduire considérablement la taille des intervalles
de confiance par rapport à des méthodes sans sélection. Deuxièmement, elle est très rapide, ce
qui la rend facilement utilisable sur des jeux de données très grands qui sont fréquents dans les
études génétiques. Notre méthode peut gérer des cas de très grande dimension grâce à une étape
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de Sure Independence Screening développée par (Ji & Jin, 2012). Nous appliquons ensuite un
critère LASSO (Tibshirani, 1996) combiné avec la méthode de ”stability selection” (Meinshausen
& Bühlmann, 2010). Nous proposons également une méthode de bootstrap non paramétrique
pour calculer des intervalles de confiance, qui ont ensuite été validés sur des données simulées.

Au cours de notre étude numérique, nous avons observé des conclusions similaires à celles
de Zhou et al. (2013) dans le cadre Bayésien : dans des cas très parcimonieux (par exemple,
200 SNPs causaux sur 100000), l’estimateur qui inclut une étape de sélection de variable est
non biaisé et sa variance empiriquement est considérablement plus faible que celle de l’estima-
teur du maximum de vraisemblance. Cependant, quand le nombre de SNPs causaux est élevé,
inclure une étape de sélection de variables conduit à sous-estimer fortement l’héritabilité. Nous
avons développé un critère à appliquer sur les données pour avoir une idée de la parcimonie et
pour décider s’il est judicieux ou non d’appliquer une technique de sélection de variables avant
d’estimer l’héritabilité.

Nous avons donc construit un estimateur hybride capable de s’adapter au régime de parci-
monie et nous avons montré sur des données simulées que cette procédure permet de réduire
considérablement les intervalles de confiance dans les cas très parcimonieux par rapport à l’es-
timateur du maximum de vraisemblance.

L’avantage de notre méthode par rapport à celle de Zhou et al. (2013) est surtout d’avoir un
temps de calcul beaucoup plus faible et aussi de ne pas avoir à régler les différents paramètres
nécessaires à la convergence des algorithmes MCMC.

Applications en neuro-anatomie et en génétique animale

Nous avons appliqué notre méthode à deux jeux de données.

Le premier provient du projet européen IMAGEN, qui est une étude sur la santé mentale des
adolescents. Nous avons estimé l’héritabilité du volume du cerveau et des volumes des différentes
régions sous-corticales. Six des neuf phénotypes n’ont pas passé le critère de sélection que nous
avons proposé, nous pouvons donc penser qu’un grand nombre de SNPs sont impliqués dans
leurs variations. Nous avons obtenus avec notre méthode des résultats similaires à ceux obtenus
avec des résultats obtenus avec des approches classiques de maximum de vraisemblance, comme
ceux obtenus par Toro et al. (2015) qui ont étudié les mêmes données à l’aide du logiciel GCTA
développé par Yang et al. (2011). Cependant, pour les trois autres phénotypes, nous avons obtenu
des estimations de l’héritabilité avec de très petites erreurs standard mais également une liste de
SNPs potentiellement impliqués dans les variations et dont la pertinence pourrait être étudiée
d’un point de vue biologique. Cette application est décrite dans le Chapitre 3 de ce manuscrit,
après la présentation de notre méthode et la validation de celle-ci sur des données simulées.

La deuxième application est l’étude d’une espèce de truites appelée Salmo trutta. Cette
truite d’eau douce peut ou non, durant sa vie, décider de quitter l’eau douce pour migrer vers
la mer. Cette migration a un impact majeur sur la conservation de la truite, et nous voudrions
comprendre les raisons de cette décision. Il apparâıt que la croissance durant la phase en eau
douce pourrait être un facteur déterminant sur la décision des truites : en effet, si un poisson a
une bonne croissance en eau douce, il n’a pas d’intérêt à aller en mer où les chances de survie sont
plus faibles. Néanmoins, si la truite n’arrive pas à grandir en eau douce, le bénéfice de rejoindre
la mer où les chances de grandir sont plus importantes peut compenser les risques associés
à ce changement. Nous souhaiterions alors rechercher la proportion de facteurs génétiques et
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environnementaux impliqués dans les variations de la taille des truites, et si possible déterminer
quels SNPs et quelles variables environnementales sont associées à la croissance des truites. Le
jeu de données contient la taille de 192 truites dont le génotype est décrit par 4069 SNPs. Cette
application est décrite dans le chapitre 4.

6.4 Estimation de l’héritabilité pour des traits binaires

Nous nous intéressons à l’extension des méthodes précédentes à l’estimation de l’héritabilité
d’une maladie, auquel cas les observations sont catégorielles (patient ou contrôle). Nous avons
trouvé dans la littérature différents modèles utilisés pour estimer l’héritabilité de traits binaires.

6.4.1 Modèle linéaire mixte généralisé et “liability model”.

Une généralisation intuitive des travaux précédents à l’estimation de l’héritabilité de traits bi-
naires serait de considérer le modèle linéaire généralisé suivant :

Yi ∼ B(qi), (6.13)

avec qi = g(li) où g est une fonction de lien et li est défini par

l = Zu + e, (6.14)

avec u ∼ N (0, σ?2u ) et e ∼ N (0, σ?2e ), comme dans le LMM classique défini à la Section 6.2.
Un choix classique de fonction de lien dans le cas de données binaires est par exemple

g(x) =
exp(x)

1 + exp(x)
,

ce qui garantit que qi ∈ (0, 1).
L’héritabilité peut alors être définie pour la variable continue l, et donc la définition est identique
à celle que l’on a considérée précédemment pour des phénotypes gaussiens :

η? =
Nσ?2u

Nσ?2u + σ?2e
. (6.15)

Un autre modèle, plus ancien et plus fréquemment utilisé, a été proposé par Falconer (1965),
qui a fait l’hypothèse que les observations binaires pouvaient être vues comme des indicatrices
qu’une certaine variable continue et non observée dépasse un seuil t :

Yi = 1{li>t} (6.16)

avec li définie par la même expression (6.14) que dans le modèle précédent.
Ce modèle est usuellement appelé le “liability model” (Falconer (1965), Lee et al. (2011),

Tenesa & Haley (2013)). L’héritabilité est alors également définie à l’échelle continue, avec la
même définition que celle donnée dans l’équation (6.15).
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6.4.2 Méthodes existantes

Dans la littérature spécifique à l’estimation de l’héritabilité de phénotypes binaires, nous avons
trouvé des méthodes associées à chacun des modèles décrits précédemment. Pour le premier
modèle (6.13), de Villemereuil et al. (2013) ont proposé d’estimer la variance σ?2u des effets
aléatoires en utilisant des méthodes MCMC développées par Hadfield (2010), puis d’estimer
l’héritabilité par le ratio

η̂ =
σ̂2
u

σ̂2
u + 1 + 1

,

où le premier 1 du dénominateur représente la variance résiduelle et le deuxième 1 la dis-
tribution spécifique à la fonction de lien probit (Nakagawa & Schielzeth, 2010). La variance
résiduelle est en effet fixée à 1 car les données binaires ne permettent pas de fournir suffisam-
ment d’information pour inférer les deux variances σ?2u et σ?2e .
Puisque l’expression de la vraisemblance n’est pas possible à optimiser directement, Breslow &
Clayton (1993) ont proposé de maximiser une quasi-vraisemblance pénalisée, en utilisant une
approximation de Laplace de la vraisemblance. Il n’existe pas de résultats théoriques concernant
ces méthodes mais leurs performances numériques ont été étudiées et comparées par de Ville-
mereuil et al. (2013).

Concernant les procédures qui s’appuient sur le second modèle défini par les équations (6.14)
et (6.16), Lee et al. (2011) ont proposé d’utiliser une approche de maximum de vraisemblance
comme si les traits binaires étaient gaussiens, puis d’appliquer un facteur multiplicatif pour cor-
riger cette approximation. Golan et al. (2014) ont montré que cet estimateur était biaisé dans
plusieurs scenarios réalistes, en particulier qu’il était très sensible à la prévalence de la maladie
(quand la maladie est rare, le biais crôıt). Cet estimateur sous-estime également l’héritabilité
quand celle-ci est élevée.
Weissbrod et al. (2015) ont proposé une approche du maximum de vraisemblance pour recons-
truire la variable gaussienne non observée l avant d’estimer l’héritabilité.
A notre connaissance, aucune des méthodes précédemment présentées ne possède de validation
théorique. De plus, elles ne prennent pas en compte un élément essentiel des données de cas-
contrôles qui proviennent des études médicales. En effet, bien que la maladie étudiée puisse être
rare, dans une étude médicale, le nombre de patients est à peu près égal au nombre de contrôles,
ce qui veut dire que la proportion de patients dans l’étude peut être très différente de la pro-
portion de patients dans la population générale. La méthode proposée par Golan et al. (2014)
est une méthode de moments qui prend en compte ce sur-échantillonnage des patients et c’est,
à notre connaissance, la seule méthode dans ce cas.
Plus précisément, Golan et al. (2014) ont considéré une version simplifiée du modèle (6.14), où
la variable continue l est définie par

l = g + e,

où g est un effet génétique aléatoire, dont les composantes sont corrélées, et e est un effet
aléatoire environnemental, que l’on suppose indépendant des effets génétiques. Les deux effets
sont supposés gaussiens : e a une variance égale à (1 − η?)IdRn et g a une matrice de variance
covariance dont les entrées diagonales sont égales à η? et le terme non diagonal (i, j) est égal à
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η?Gi,j . Pour 1 ≤ i 6= j ≤ n, la matrice de variance covariance de (li, lj) est donnée par(
1 Gi,jη

?

Gi,jη
? 1

)
.

Ils ont ensuite défini la variable

pi =
Yi − P√
P (1− P )

,

où P est la proportion de cas dans l’étude et l’événement {S = 1} est réalisé si les individus i
et j sont sélectionnés dans l’étude.

L’estimateur de l’héritabilité proposé par Golan et al. (2014) est un estimateur des moindres
carrés obtenu en minimisant le critère∑

i 6=j
(pipj − E(pipj |S = 1))2 .

Puisque E(pipj |S = 1) n’a pas d’expression que l’on peut calculer explicitement, Golan et al.
(2014) ont eu l’idée d’utiliser le fait que les corrélations Gi,j soient petites et ont proposé une
approximation grâce à des développements de Taylor autour de la quantité Gi,j .

6.4.3 Contribution

Comme la méthode de Golan et al. (2014) semblait très efficace en pratique et puisque c’est
la seule méthode que nous ayons vue qui prenne en compte la spécificité des données de cas-
contrôles, nous avons cherché à établir les propriétés théoriques de leur estimateur dans le cas
où n et N tendent vers l’infini, et n/N tend vers a ∈ (0,+∞).
Nous avons considéré le modèle défini par les équations (6.16) et (6.14), et nous avons supposé
que Z était une matrice aléatoire dont les colonnes sont centrées et réduites comme nous l’avions
défini à la Section 6.2.
Dans ce modèle, la matrice de variance covariance de (li, lj) s’écrit :

Σ(N) =

(
1 + η?(GN (i, i)− 1) η?GN (i, j)

η?GN (i, j) 1 + η?(GN (i, i)− 1),

)
où, pour tous 1 ≤ i, j ≤ n,

GN (i, j) =
1

N

N∑
k=1

Zi,kZj,k. (6.17)

L’idée principale est de remarquer que les quantités GN (i, j), GN (i, i) − 1 et GN (j, j) − 1
sont petites, ce qui implique que la matrice Σ(N) est proche de l’identité.
Inspirés par la méthode de Golan et al. (2014), nous avons proposé des approximations au pre-
mier et au second ordre de E[pipj |Z, S = 1] grâce à des développement de Taylor autour de
GN (i, j), GN (i, i)− 1 et GN (j, j)− 1, qui sont ici des variables aléatoires.
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Malgré quelques différences entre les modèles considérés, nous trouvons la même approximation
au premier ordre que Golan et al. (2014) mais nous avons des différences entre les deux approxi-
mations du deuxième ordre.
Nous avons, dans un premier temps, recherché les propriétés théoriques de l’estimateur obtenu
avec l’approximation du premier ordre : nous avons montré que c’était un estimateur consistant
de l’héritabilité sous des hypothèses faibles sur la matrice de SNPs.
Ensuite, nous avons comparé les performances numériques des estimateurs obtenus avec les deux
approximations, à la fois d’un point de vue statistique et computationnel.
Ces résultats sont décrits dans le chapitre 5 de ce manuscrit.
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Titre : Estimation de l’héritabilité dans les modèles mixtes en grande dimension : théorie et 
applications

Mots clés : Grande dimension, Héritabilité, Modèles mixtes, Sélection de variables.

Résumé : Nous  nous  intéressons  à  des
méthodes statistiques pour estimer l'héritabilité
d'un caractère  biologique,  qui  correspond à la
part des variations de ce caractère qui peut être
attribuée  à  des  facteurs  génétiques.  Nous
proposons  dans  un  premier  temps  d'étudier
l'héritabilité  de  traits  biologiques  continus  à
l'aide de modèles linéaires mixtes parcimonieux
en grande dimension. Nous avons recherché les
propriétés  théoriques  de  l'estimateur  du  maxi-
mum de vraisemblance de l'héritabilité  :  nous
avons montré que cet estimateur était consistant
et vérifiait un théorème central limite avec une
variance asymptotique que nous avons calculée
explicitement. Ce résultat, appuyé par des simu-
lations  numériques  sur  des  échantillons  finis,
nous a permis de constater que la variance de
notre estimateur était très fortement influencée
par le ratio entre le nombre d'observations et la
taille des effets génétiques. Plus précisément, 

quand le nombre  d’observations est faible
comparé à la taille des effets génétiques (ce qui
est  très  souvent  le  cas  dans  les  études
génétiques), la variance de l’estimateur était très
grande. Ce constat a motivé le développement
d'une méthode de sélection de variables afin de
ne garder  que les  variants  génétiques  les  plus
impliqués dans les variations phénotypiques et
d’améliorer  la  précision  des  estimations  de
l’héritabilité.
La dernière partie de cette thèse est consacrée à
l'estimation  d'héritabilité  de  données  binaires,
dans  le  but  d'étudier  la  part  de  facteurs
génétiques  impliqués  dans  des  maladies  com-
plexes. Nous proposons d'étudier les propriétés
théoriques de la méthode développée par Golan
et al. (2014) pour des données de cas-contrôles
et  très  efficace  en  pratique.  Nous  montrons
notamment  la  consistance  de  l’estimateur  de
l’héritabilité proposé par Golan et al. (2014).

Title: Heritability estimation in high-dimensional mixed models : theory and applications

Keywords : High Dimension, Heritability, Mixed Models, Variable Selection.

Abstract  : We  study  statistical  methods  to
estimate  the  heritability  of  a  biological  trait,
which  is  the  proportion  of  variations  of  this
trait  that  can be explained by genetic factors.
First,  we  propose  to  study  the  heritability  of
quantitative  traits  using  high-dimensional
sparse linear mixed models. We investigate the
theoretical  properties  of  the  maximum
likelihood estimator for the heritability and we
show that it is a consistent estimator and that it
satisfies a central limit theorem with a closed-
form  expression  for  the  asymptotic  variance.
This  result,  supported  by  an  extended
numerical study, shows that the variance of our
estimator  is  strongly  affected  by  the  ratio
between  the  number  of  observations  and  the
size  of  the  random  genetic  effects.  More
precisely, when the number of observations is
small  compared  to  the  size  of  the  genetic
effects  (which  is  often  the  case  in   genetic
studies), the variance of our estimator is very

large.  This  motivated  the  development  of  a
variable  selection  method in order  to  capture
the  genetic  variants  which  are  involved  the
most in the phenotypic variations and provide
more  accurate  heritability  estimations.  We
propose  then  a  variable  selection  method
adapted  to  high  dimensional  settings  and  we
show that, depending on the number of genetic
variants  actually  involved  in  the  phenotypic
variations, called causal variants, it was a good
idea to include or not a variable selection step
before estimating heritability. 
The  last  part  of  this  thesis  is  dedicated  to
heritability estimation for binary data, in order
to  study  the  proportion  of  genetic  factors
involved in  complex diseases.  We propose to
study the theoretical properties of the method
developed  by  Golan  et  al.  (2014)  for  case-
control data, which is very efficient in practice.
Our main result is the proof of the consistency
of their heritability estimator.
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